ALMA está compuesto por 66 antenas de alta precisión ubicadas en el llano de Chajnantor, a 5.000 metros de altitud en el norte de Chile. ALMA

Los astrónomos inician una nueva era de descubrimientos en Chile gracias a una nueva configuración de las antenas situadas a kilómetros de distancia entre sí

Los astrónomos han comenzado a usar, por primera vez, la mayor separación posible entre las 66 antenas del radio telescopio ALMA, ubicado en el árido desierto de Atacama, en el norte de Chile, manteniéndolas a una distancia de 15 kilómetros entre sí. ¿El resultado? La mayor nitidez alcanzable con este observatorio capaz de investigar el universo frío, aquel que, a diferencia de estrellas y galaxias, no podemos ver con los telescopios convencionales.

Científicos del Instituto de Astrofísica de la Pontificia Universidad Católica (IA-PUC) y del Centro de Astrofísica y Tecnologías Afines (CATA), en Chile, han logrado con la nueva configuración obtener la imagen más nítida del gas frío ubicado la región central de un choque de galaxias, un gas que alimenta simultáneamente a dos monstruosos agujeros negros supermasivos a 360 millones años luz de nuestro planeta.

Se trata de dos galaxias –algunos expertos hablan de que serían tres- que se encuentran en proceso de colisión en la constelación de Ofiuco, dando origen a una nueva galaxia conocida como NGC 6240. Este proceso es un adelanto de lo que ocurrirá en nuestra propia Vía Láctea cuando se fusione con la vecina Andrómeda, en unos 5.000 millones de años de distancia. De ahí el interés por pasa en este sistema, donde el comportamiento de los agujeros negros es diferente al que había sido predicho desde hace un par de décadas, cuando se comenzó a observar esta formación.

Visión poderosa

Una técnica conocida como “interferometría”, similar a la que se utilizó para obtener la primera imagen del evento de horizonte de un agujero negro en 2019, es la que está permitiendo realizar todos estos hallazgos. La diferencia es que, en el caso del primer agujero negro fotografiado, se utilizaron observatorios en diversos lugares del mundo, con una separación no de decenas, sino de miles de kilómetros.

Ezequiel Treister, astrónomo IA-PUC que lideró la investigación, lo explica: “Sabíamos que utilizar esta técnica abriría la puerta a un universo de nuevos descubrimientos en astronomía. Cuando se combina la luz de más de un receptor, como es el caso de ALMA con 66 antenas, mayor separación entre ellos equivale a mayor nitidez”.

Para tener una idea, podemos comparar esta configuración de antenas con la apertura del espejo en un telescopio convencional como el Hubble. En estos telescopios ópticos, la apertura del espejo, o su diámetro, es la que define el detalle de las imágenes que se obtienen: cuanto más grande sea la apertura, mayor detalle. “La configuración en ALMA tenía antenas con una distancia máxima de 15 kilómetros. Eso permite obtener un detalle de imagen igual al que se conseguiría si tuviéramos un telescopio entero de 15 kilómetros de tamaño/apertura”, explica Hugo Messias, astrónomo de ALMA que participó de la investigación.

Ezequiel Treister cuenta que el trabajo comenzó en 2015, después de una reunión de astrónomos en el Instituto Tecnológico de California, Caltech, donde junto a otros colegas comenzaron a planear propuestas para ALMA. “Las observaciones recién se pudieron realizar en septiembre de 2017. No era fácil hacer coincidir la configuración correcta de las antenas con las condiciones climáticas adecuadas. Y después vino el análisis de los datos. Fueron dos años de intenso trabajo, codo con codo con expertos colaboradores de todas partes del mundo”, relata el astrónomo.

A comienzos del pasado enero, desde las remotas islas de Hawái, donde se desarrollaba la reunión número 235 de la sociedad astronómica estadounidense, se dieron a conocer los resultados de esta investigación, que arroja luces sobre el destino que correrá nuestra propia galaxia.

Turbulenta colisión

Un misterio que se pudo resolver fue el que existía en torno al tamaño de los agujeros negros. “Se pensaba que eran demasiado masivos en proporción a sus galaxias, ya que, al medir sus masas, era imposible separarlos de otro material en la región central, como gas y estrellas”, explica Treister. La investigación pudo medir directamente las masas de los agujeros, concluyendo que corresponden a entre 500 y 1.000 millones de veces la del Sol, unas 100 veces más grande que el que encontramos en el centro de la Vía Láctea, pero proporcionales a lo que se espera para el tamaño de sus galaxias.

También se pudo entender la configuración del gas que se ubica entre los dos agujeros negros: forman una especie de filamento de gas molecular que los une a una distancia similar a la de la Tierra con Próxima Centauri, (la estrella más cercana a nuestro planeta ubicada a cuatro años luz). “Lo que descubrimos sin duda nos sorprendió. En vez del disco rotante predicho hace 20 años, ahora veíamos claramente un filamento de gas uniendo los dos agujeros negros. Esta estructura parece estar estática, pero no lo está”, agrega Franz Bauer, astrónomo del Instituto de Astrofísica de la Universidad Católica que también participó de la investigación.

Estos revolucionarios datos nos indican que la mayor parte del gas detectado se localiza en la región entre los dos agujeros negros y que hay tal cantidad que equivaldría a 10.000 millones de masas solares o unas 15 veces más que todo el gas que encontramos en la Vía Láctea. Parte de este gas es expulsado por intensos vientos a velocidades de alrededor de 500 kilómetros por segundo o más. “Pensamos que, eventualmente, gran parte del gas será expulsado de la región central de la galaxia, mientras que una fracción relativamente pequeña caerá al interior del agujero negro, alimentándolo”, dice Franz Bauer.

A futuro, el potencial de esta técnica de observación es enorme. Una buena parte de las regiones del espacio que no hemos podido ver hasta ahora se hallan “ocultas”, debido al polvo existente en las regiones centrales de las galaxias: este absorbe la luz óptica, lo que explica por qué al observar hacia el centro de la galaxia se aprecia mayormente oscuridad. Una auténtica pared de polvo que hemos aprendido a atravesar y que comienza, de a poco, develar todos sus secretos.

Por Ricardo Acevedo

Santiago de Chile 27 ENE 2020 - 18:44 COT

Imagen del cometa Churyumov–Gerasimenko tomada de cerca por la sonda Rosetta en 2014./ESA/ROSETTA/NAVCAM

Nuevas observaciones apoyan la llegada de material espacial precursor de vida a la Tierra.

El fósforo es mucho más que aquel nombre común de la cerilla, ya pasado de moda. Es un elemento químico indispensable para la vida, una parte crucial del ADN y el ARN así como de otras estructuras básicas de la biología molecular. En el ser humano es el segundo mineral más abundante y constituye el 1% del peso corporal. Por eso no es de extrañar que los investigadores se pregunten de dónde viene y cómo llegó a la Tierra tanta cantidad de fósforo, porque en el Universo su abundancia es mucho menor que en los seres vivos. Ahora, los astrónomos han hallado una posible ruta que va de la síntesis del fósforo en estrellas masivas en tiempos antiguos a su presencia en la Tierra y sobre todo en la vida que alberga.

El trabajo se basa en un estudio a distancia a través del conjunto de telescopios ALMA en una región de formación estelar en la constelación de Auriga así como en las medidas in situ de un cometa por los instrumentos de la sonda Rosetta. Se cree que el fósforo se formó en las estrellas y luego se extendió por el Universo cuando algunas de éstas explotaron en forma de supernova.

El equipo de investigadores, liderado por Víctor Rivilla, encontró que algunas estrellas jóvenes y masivas crean cavidades en la nube interestelar en la que se encuentran y allí se forman moléculas que contienen fósforo, especialmente de monóxido de fósforo. El mecanismo de formación combinaría la radiación con pulsos de energía emanados de la joven estrella.

De allí, las moléculas pueden anclarse en gránulos de polvo helado que lleguen a formar parte de cometas. Según su hipótesis, los elementos básicos de la vida habrían llegado a la Tierra en el bombardeo del naciente planeta por cometas. Cuando Rosetta, de la Agencia Europea del Espacio (ESA) se acercó y acompañó al cometa Churyumov–Gerasimenko a partir de 2014 a lo largo de su máxima aproximación al Sol, se hicieron muchas medidas y se encontraron indicios de fósforo. Ahora, el análisis en profundidad de los datos ha permitido confirmar la presencia de monóxido de fósforo en el cometa.

“La combinación de los datos de ALMA y de Rosetta ha revelado una especie de hilo químico durante todo el proceso de formación estelar, en el que el papel protagonista corresponde al monóxido de fósforo”, explica el italiano Victor Rivilla, que ha dirigido el estudio, publicado en Monthly Notices of the Royal Astronomical Society. Rivilla recuerda que la vida apareció en la Tierra hace unos 4.000 millones de años, pero que todavía no comprendemos los procesos que la hicieron posible.
“El fósforo es esencial para la vida que conocemos”, señala Kathrin Altwegg, investigadora principal del instrumento Rosina de Rosetta, que hizo las medidas. “Dado que los cometas probablemente trajeron grandes cantidades de compuestos orgánicos a la Tierra, el monóxido de fósforo encontrado en el cometa puede fortalecer el vínculo entre los cometas y la vida en la Tierra”.

El cometa estudiado es de la familia de cometas de Júpiter y tiene un periodo de 6,5 años. Se cree que se acercó mucho al planeta gigante en 1959, lo que cambió su órbita. Tiene un núcleo de dos lóbulos y una dimensión máxima de 4,3 kilómetros. Rosetta mostró que bajo su superficie polvorienta hay material helado que apenas ha sufrido cambios desde que se formó antes que el Sol a partir del disco protoplanetario que dio lugar al Sistema Solar actual, lo que lo convierte en un sujeto ideal para trazar la ruta de los elementos químicos.

Para la observación con ALMA, se utilizaron 40 de sus antenas (situadas en Chile). Los espectros obtenidos mostraron la presencia de fósforo en las paredes de las cavidades citadas, en forma de óxido y de nitruro, lo que confirma que se puede sintetizar en el medio interestelar. Las estrellas no se suelen formar de una en una y el Sol probablemente no fue una excepción, explican los astrónomos del Observatorio Europeo Austral(ESO) y otras instituciones.

El cometa probablemente heredó la composición de la nebulosa en la que se formó, y en ella predomina también el óxido de fósforo, que estaría presente desde entonces dentro del cometa, y además en mayor proporción debido a su falta de reacción con otros elementos, en especial el hidrógeno. En cuanto a cómo llegó a la Tierra en cantidad suficiente para la vida, la concentración de fósforo en la corteza terrestre se estima en 930 partes por millón, aunque en gran parte no se puede utilizar en procesos biológicos porque está encerrado en minerales insolubles. Una fuente adicional serían los meteoritos y los cometas como el que estudió Rosetta de cerca.

Una arquea de Asgard vista a través del microscopio. NATURE

Científicos japoneses observan por primera vez arqueas de Asgard, microbios cuyos ancestros dieron el primer paso para la aparición de animales y plantas hace 2.000 millones de años

Tras casi 15 años de trabajo, científicos japoneses han conseguido por primera vez sacar del fondo del mar y criar en cautividad arqueas de Asgard, el misterioso organismo que puede explicar el origen de todas las formas de vida complejas de la Tierra, incluidos los humanos.

Todos los seres vivos que podemos ver a simple vista están hechos de los mismos ladrillos: células complejas con orgánulos internos llamadas eucariotas. Una persona es un conjunto de 30 billones de células eucariotas que cooperan entre sí con un objetivo común. Todas las plantas, animales y hongos son eucariotas.

En la Tierra hay otros dos grandes dominios de la vida, el de las bacterias y el de las arqueas. Estas últimas, más primitivas, sin orgánulos internos, son el dominio más misterioso e interesante, pues desde hace unos años se piensa que hace unos 2.000 millones de años una arquea se tragó a otro microbio, lo asimiló y se transformó en la primera célula compleja. Fue el primer paso hacia nosotros, y aún no se sabe cómo sucedió.

En 2015, científicos escandinavos que rastreaban las profundidades del océano descubrieron las arqueas de Loki, a las que bautizaron en honor al dios nórdico. No tenían de ellas más que su ADN, pues resultaba imposible aislar y criar en el laboratorio estos microbios que viven a más de 3.000 metros de profundidad bajo el mar. Sus genes indicaban que estas arqueas eran los parientes más cercanos de todos los eucariotas y que tenían genes esenciales para realizar funciones básicas de la vida eucariota, aunque en teoría no los necesitaban.

Desde entonces se han descubierto otras arqueas similares —Thor, Odin, Heimdal, Hel— que  manejan genes eucariotas y a las que se ha agrupado en la familia de Asgard, el hogar de los dioses vikingos. Hasta ahora nadie sabía qué aspecto tienen estos probables descendientes de nuestro primer ancestro.

En 2006, el equipo de Hiroyuki Imachi, del Instituto de Ciencia y Tecnología del Mar y la Tierra de Japón, extrajo sedimento marino de la fosa de Nankai, frente a la costa sur de la principal isla de Japón. Era un hábitat a 2.500 metros de profundidad, con dos grados de temperatura, en completa oscuridad, un territorio más hostil y desconocido que la superficie de Marte. Al analizar las muestras los científicos se dieron cuenta de que contenían arqueas de Asgard. Tenían en su mano ser los primeros en criar y observar a una de estas criaturas viva.

Durante cinco largos años intentaron que crecieran en un biorreactor, un aparato que reproduce su hábitat natural y aporta nutrientes y que funciona parecido a las máquinas de café por goteo, en palabras del propio Imachi. Después pasaron otros siete años engrosando las comunidades hasta poder aislarlas y mirarlas al microscopio. Esta semana, el científico y el resto de su equipo publica el estudio en el que relatan su éxito al haber conseguido ver por primera vez uno de estos organismos vivos. La clave, dice Imachi, ha sido dejar que las arqueas creciesen junto a otros microbios de su entorno y añadir un ingrediente inusual: leche de fórmula para bebés. “Aunque aún no lo hemos confirmado, es muy posible que estas arqueas estén usando alguno de los ingredientes de la leche en polvo para bebés como alimento”, explica Imachi.

Las arqueas de Asgard miden una diezmilésima de centímetro y se reproducen muy despacio para los estándares de un microbio, más o menos una vez al mes. Lo más llamativo son sus largos tentáculos entrelazados. Los científicos aún no saben para qué los usan, pero creen que son esenciales para explicar cómo surgió la vida compleja a partir de organismos muy parecidos a estos.

Según su teoría, expuesta en Nature, el ancestro de los eucariotas era una arquea similar a la de Asgard. La vida compleja surgió siguiendo lo que ellos llaman las tres “es”. Primero la arquea enredó a una bacteria con sus tentáculos, después la engulló, y por último la endogenizó, es decir, estableció con ella una relación de cooperación para intercambiarse nutrientes conocida como sintrofía. La bacteria, que hasta entonces era un organismo independiente, se transformó en una mitocondria, un orgánulo para aportar energía a su huésped. Imachi le ha dado un nuevo nombre a los organismos que sacaron de la fosa de Nakai: arquea Prometeo (Prometheoarchaeum syntrophicum), por el ser mitológico que robó el fuego —la energía— a los dioses para dárselo a los humanos. 2.000 millones de años después, las mitocondrias siguen presentes en todas las células eucariotas con idéntica función. El origen de la vida compleja fue la cooperación.

“Nadie puede retroceder 2.000 millones de años y ver qué sucedió exactamente, pero sí podemos hipotetizar cómo surgimos los eucariotas a partir de los microbios y nosotros lo hemos hecho gracias al primer cultivo vivo de estas arqueas y en el conocimiento previo que teníamos del origen de los eucariotas”, explica Imachi.

La hipótesis de Imachi concuerda con lo que teorizó a finales de los sesenta la bióloga Lynn Margulis, que dijo que las mitocondrias y los cloroplastos que ayudan a las plantas a alimentarse de luz nacieron por simbiosis. En 1999, la bióloga española Purificación López-García teorizó que los eucariotas aparecieron por una alianza de sintrofía con bacterias. Los científicos japoneses han observado que las arqueas descubiertas se alimentan de aminoácidos y que para poder digerirlos establecen alianzas sintrofía con las bacterias de su entorno, que les aportan pequeñas cantidades de oxígeno. Por eso Imachi solo fue capaz de criarlas cuando les dejó vivir y cooperar junto a sus compañeras.

Tal vez esa necesidad de oxígeno bacteriano fue mucho mayor hace 2.000 millones de años, cuando la Tierra comenzó a llenarse de este compuesto, según apuntan Christa Schleper y Filipa Sousa, expertas en arqueas de la Universidad de Viena, en un comentario al estudio. Y para entonces es probable que las arqueas ya tuviesen parte de la maquinaria genética para leer y transcribir ADN que necesitaban para transformarse en células complejas.

“No me parece correcto decir que este organismo es el eslabón perdido entre la vida sencilla y la compleja, pero tiene todo el sentido que algo muy parecido a lo que describe este estudio fuese el inicio de todo”, opina Iñaki Ruiz-Trillo, investigador del Instituto de Biología Evolutiva de Barcelona (CSIC-UPF). “Este trabajo tiene un mérito brutal”, añade.

Las arqueas de Asgard son seres actuales que han evolucionado durante 2.000 millones de años y por tanto no son iguales a sus ancestros. “Es evidente que no vamos a poder presenciar todo ese proceso evolutivo observando a estas arqueas”, comenta Juli Peretó, experto en biología sintética de la Universidad de Valencia, pero añade que “gracias a ellas tenemos un primer fotograma de esa evolución y, probablemente, tendremos más”.

Imachi explica que a partir de ahora tiene dos objetivos: criar otras especies de arqueas de Asgard y averiguar para qué utilizan sus misteriosos tentáculos.

Por NUÑO DOMÍNGUEZ

18 ENE 2020 - 04:14 COT

Viveros estelares interconectados forman la mayor estructura gaseosa de la Vía Láctea

El hallazgo modifica la visión de 150 años de las guarderías // En lugar de ser anillos en expansión, es un filamento ondulado

 

Astrónomos de Harvard descubrieron una estructura gaseosa monolítica en forma de onda, la más grande vista en la Vía Láctea, compuesta por viveros estelares interconectados.

Nombrada onda Radcliffe en honor a la base de operaciones de la colaboración, el Instituto Radcliffe de Estudios Avanzados, el descubrimiento transforma la visión de 150 años de las guarderías estelares cercanas como un anillo en expansión, a otra que presenta más bien un filamento ondulado, formador de estrellas, que alcanza billones de kilómetros por encima y por debajo del disco galáctico.

El trabajo, publicado en Nature, fue posible gracias a un nuevo análisis de datos de la nave espacial Gaia de la Agencia Espacial Europea (AEE), lanzada en 2013 con la misión de medir de forma precisa la posición, la distancia y el movimiento de las estrellas.

El equipo combinó los datos superprecisos de Gaia con otras mediciones para construir un mapa 3D detallado de materia interestelar en la Vía Láctea, y percibió una pauta inesperada en el brazo espiral más cercano a la Tierra.

Así, los expertos descubrieron una estructura larga y delgada, de alrededor de 9 mil años luz de largo y 400 de ancho, con forma de ola y una cresta de 500 años luz arriba y abajo del plano medio del disco de nuestra galaxia. Esta ola acoge muchas de las guarderías estelares que se pensaba que formaban parte del Cinturón de Gould, una banda de regiones formadoras de estrellas que se cree que están orientadas alrededor del Sol en un anillo.

Ningún astrónomo esperaba que viviéramos junto a una colección gigante de gas en forma de ola, o que formara el brazo local de la Vía Láctea, señaló Alyssa Goodman, profesora de astronomía aplicada de la Universidad Harvard, investigadora asociada en el Instituto Smithsoniano, y codirectora del Programa de Ciencias en el Instituto Radcliffe de Estudios Avanzados.

“Nos sorprendimos por completo cuando nos dimos cuenta de lo larga y recta que es la onda Radcliffe, mirándola desde arriba en 3D, pero lo sinusoidal que es cuando se ve desde la Tierra –admitió–. La existencia misma de esta onda nos obliga a repensar nuestra comprensión de la estructura 3D de la Vía Láctea.

Gould y Herschel observaron estrellas brillantes formándose en un arco proyectado en el cielo, por lo que durante mucho tiempo la gente ha tratado de averiguar si estas nubes moleculares realmente forman un anillo en 3D, recordó João Alves, profesor de astrofísica estelar de la Universidad de Viena.

Mapa 3D

En cambio, lo que hemos observado es la estructura de gas coherente más grande que conocemos en la galaxia, organizada no en un anillo, sino en un filamento masivo y ondulado. El Sol se encuentra a sólo 500 años luz de la onda en su punto más cercano. Ha estado frente a nuestros ojos todo el tiempo, pero no podíamos verlo hasta ahora, explicó.

El nuevo mapa en 3D muestra el vecindario galáctico bajo una nueva luz, brindando a los investigadores una vista revisada de la Vía Láctea y abriendo la puerta a otros descubrimientos importantes.

“No sabemos qué causa esta forma, pero podría ser como una onda en un estanque, como si algo extraordinariamente masivo aterrizara en nuestra galaxia. Lo que sí sabemos es que nuestro Sol interactúa con esta estructura. Pasó junto a un festival de supernovas cuando cruzó Orión hace 13 millones de años, y en otros 13 millones de años volverá a cruzar la estructura, como si estuviéramos surfeando la ola, destacó Alves.

En estudios anteriores, el grupo de investigación de Douglas Finkbeiner, profesor de astronomía y física en Harvard, fue pionero en técnicas estadísticas avanzadas para mapear la distribución 3D del polvo, utilizando grandes análisis de los colores de las estrellas.

Ahora, armados con nuevos datos de Gaia, los estudiantes graduados de Harvard Catherine Zucker y Joshua Speagle aumentaron recientemente estas técnicas, mejorando de forma drástica la capacidad de los astrónomos para medir distancias a las regiones de formación estelar.

Este trabajo, dirigido por Zucker, fue publicado en el Astrophysical Journal.

Imagen del centro galáctico tomada por el telescopio VLT en Atacama (Chile). FRANCISCO NOGUERAS LARA ESO

Hace alrededor de 1.000 millones de años hubo un estallido extremadamente violento de formación de estrellas en el centro de la Vía Láctea. Al contrario de lo que los científicos esperaban hasta ahora, la formación de las estrellas en el centro no ha sido continua a lo largo de la vida de la Vía Láctea, sino más bien abrupta y con grandes pausas. El estallido ocurrió tras miles de millones de años de tranquilidad y originó más de 100.000 supernovas. Estas explosiones corresponden al final de la vida de una estrella muy masiva. Los astrónomos pueden, por lo tanto, concluir que hubo un nacimiento muy abundante de astros de todo tipo, entre ellos muchos de gran masa, que tuvieron una corta existencia y acabaron con este tipo de explosiones.

El proyecto Galacticnucleus, liderado por Rainer Schödel, investigador del Instituto de Astrofísica de Andalucía (IAA) del Consejo Superior de Investigaciones Científicas (CSIC) y segundo autor del estudio que se publica este jueves en Nature Astronomy, es el que ha ofrecido tales conclusiones sobre la historia de nuestra galaxia. “Gracias a nuestro catálogo de estrellas tan detallado y los datos recopilados, podemos entender la propia galaxia que habitamos. Este nuevo hallazgo es uno de los mayores resultados y tan solo una piedra de un mosaico para desvelar la historia del universo”, explica el experto.

Una de las grandes metas de los astrónomos, cuando obtuvieron el catálogo el pasado mes de octubre, era entender la formación de aquellas estrellas y han alcanzado su objetivo. El universo tiene más de 13.000 millones de años. El 80% de las estrellas en el centro de la Vía Láctea se formaron desde aquel pasado remoto, entre el nacimiento del universo y hasta hace 8.000 millones de años. El estudio, cuyo autor principal es Francisco Nogueras Lara, investigador del IAA, revela que este periodo de formación inicial fue seguido por unos 6.000 millones de años de descanso durante el cual apenas nacieron estrellas.

Esta etapa que los científicos llaman “estéril” fue interrumpida por un episodio cuyas condiciones son comparables a las de las galaxias starbust (estallidos de estrellas) que muestran un ritmo de más de cien masas solares por año, muy superior a la tasa actual de la Vía Láctea, que no supera las dos. “Fue uno de los momentos más violentos de la historia de la galaxia. Normalmente, cada 100 años, hay una explosión de una supernova en toda la galaxia. En este caso la misma energía se liberó solo en el núcleo, es decir, en una décima parte”, asevera Schödel. En ese tipo de fenómenos, las estrellas que nacen, con una masa combinada de varias decenas de millones de soles, tienen una vida breve y explotan. Queman su combustible y su hidrógeno nuclear demasiado rápido en comparación con las estrellas más pequeñas. 

Los investigadores han estudiado más de tres millones de estrellas cubriendo un área correspondiente a más de 60.000 años luz cuadrados gracias a la cámara infrarroja del telescopio VLT (Very Large Telescope) en el desierto de Atacama (Chile). Una de las hipótesis que proponen para explicar este acontecimiento, que ocurrió hace relativamente poco en términos astronómicos, es que una galaxia enana se haya cruzado en el plano galáctico y por lo tanto perturbado el sistema. “Pero es difícil saberlo. Por ahora solo podemos hacer especulaciones”, previene el científico. 

David Galadí Enríquez, astrofísico del Observatorio de Calar Alto (Almería) que ya había seguido la evolución del proyecto cuando consiguieron el catálogo, compara la historia de la astronomía con la de la geología. “Lo que demuestra este estudio es que, en los dos casos, es cuestión de combinación entre gradualismo y catastrofismo. La historia se basa en una continuidad [formación de estrellas en el disco galáctico de manera sostenible] perturbada por episodios brutales sorprendentes como este, con picos de actividad impresionantes”, concluye.

 

Por AGATHE CORTES

17 DIC 2019 - 04:13 COT

El físico y biólogo británico Francis Crick (1916-2004), Premio Nobel de Medicina (junto con James Watson) en 1962 por el descubrimiento de la estructura del ADN, uno de los impulsores de la teoría de la panspermia. Marc Lieberman – Siegel RM, Callaway EM

 El estudio recién publicado expone que cuando algunos meteoritos se estrellaron contra la Tierra transportaban azúcar extraterrestre.

Para evitar que los seguidores del escritor de ciencia ficción Ray Bradbury se vengan arriba, conviene aclarar que los autores de la investigación, entre los que se cuentan dos sesudos científicos de la Nasa, no han encontrado un saco de azúcar de mesa, sino trazas de azúcares, como ribosa, en muestras de polvo obtenidas de dos meteoritos. En total, 11 partes por mil millones (ppmm) en el meteorito NWA 801 y 180 ppmm en el Murchison.

El ARN es una biomolécula presente en todos los organismos conocidos, y la ribosa es uno de sus componentes fundamentales. El ARN es responsable de copiar la información genética almacenada en el ADN y de entregar esos datos a las estructuras celulares responsables de producir las proteínas que los organismos necesitan para vivir.

Esta es la primera vez que estos azúcares bioesenciales se han detectado en meteoritos. En otros fragmentos de cuerpos celestes se hallaron anteriormente algunos componentes básicos importantes de la vida, como aminoácidos y nucleótidos (componentes del ADN y ARN), pero nunca azúcares. Hasta ahora.

El hallazgo llega diez años después de que una página la Nasa  anunciara que la glicina, uno de los 20 aminoácidos que forman las proteínas y, por tanto, un ingrediente clave para la vida, había sido detectada en muestras de polvo recogidas por la sonda espacial Stardust cuando se acercó a tan solo 236 km del núcleo del cometa Wild 2. Las muestras de polvo de la cola llegaron encapsuladas a la Tierra en enero de 2006, culminando así el viaje de más de 5 000 millones de kilómetros.

La cuestión del origen de la vida terrestre ha generado un campo de estudio especializado de la astrobiología, cuyo objetivo es dilucidar cómo y cuándo surgieron los primeros compuestos orgánicos y cómo pudieron ensamblarse para formar las primeras y más sencillas células, las de procariotas como las bacterias.

Las hipótesis más aceptadas por la comunidad científica asumen que la vida surgió en la Tierra a partir de materia inorgánica terrestre en algún momento entre hace 4 500 millones de años (MA), cuando se dieron las condiciones para que el vapor de agua pudiera condensarse por primera vez, y 2 700 MA, cuando la proporción entre algunos isótopos estables de carbono, hierro y azufre induce a pensar en un origen biogénico de los minerales y sedimentos de esa época. Los biomarcadores moleculares indican que ya existía la fotosíntesis.

Frente a estas hipótesis, otros científicos, partidarios de las hipótesis exogenéticas reunidas bajo el nombre de “panspermia”, apoyan un origen extraterrestre de la vida. Este habría tenido lugar durante los últimos 13 700 MA de evolución del universo tras la explosión primigenia del Big Bang.

La palabra panspermia, de origen griego, significa “semillas por todas partes”. Los partidarios de esta hipótesis sugieren que las “semillas” de la vida están diseminadas por todo el universo y que fueron “sembradas” en nuestro planeta.

No es mi propósito hacer una revisión de los diferentes modelos en que se ramifica –a veces disparatadamente, con sus ingenieros extraterrestres y todo– el cuerpo doctrinal panspérmico. Los interesados encontrarán cumplida respuesta a su curiosidad en este enlace o, simplemnte, tecleando en el buscador “polvo de estrellas”.

Un clarificador resumen del origen de la llamada “panspermia dirigida”, tal y como fue formulada por el Premio Nobel Francis Crick en 1971, puede encontrarse en el libro de Javier Sampedro Deconstruyendo a Darwin (Crítica, 2007).

Para lo que aquí nos ocupa, en relación con los recientes hallazgos, interesa distinguir entre las dos variantes principales en que puede ser escindida la panspermia: celular y molecular.

La hipótesis de la panspermia celular sostiene un origen de la vida terrestre a partir de microorganismos extremófilos. Estos se habrían formado en algún lugar del universo para llegar hasta la Tierra viajando como polizones en algún asteroide o cometa que hubiera impactado sobre su superficie.

Los partidarios de la panspermia molecular también defienden que la vida terrestre surgió gracias a una lluvia de materiales procedente de asteroides y cometas que se precipitó sobre la Tierra primitiva. Esto trajo consigo moléculas orgánicas relativamente complejas, pero sin alcanzar el sofisticado nivel celular.

Quienes sostienen esta segunda hipótesis la apoyan en el hecho de que los componentes orgánicos son comunes en el espacio, especialmente en el sistema solar exterior, donde las sustancias volátiles no se evaporan por calentamiento.

Las pruebas más sólidas de esta hipótesis se encuentran en las muestras de moléculas orgánicas halladas en algunos meteoritos como el AH84001 encontrado en la Antártida en 1984, que fueron objeto de fuertes controversias en las revistas Science y Geochimica et Cosmochimica Acta, y del propio meteorito Murchison, encontrado en Australia en 1969, cuyas biomoléculas han sido objeto de varias publicaciones.

Además, el telescopio espacial Spitzer detectó la década pasada una estrella, la HH46-IR, que se está formando en un proceso similar al Sol, en cuyo halo material hay una gran variedad de moléculas que incluyen compuestos de cianuro, hidrocarburos e hidróxido de carbono. Los hallazgos del Spitzer parecen apoyar el origen de la vida a partir de hidrocarburos aromáticos policíclicos, como sostiene la hipótesis PAH World, propuesta por Simon Nicholas Platts en 2005, que hasta ahora no ha sido probada.

Aunque ninguna de las dos variantes de la panspermia resuelve el problema del origen de la vida, sino que despeja al graderío del universo la enigmática pelota que se juega sobre la Tierra, son los científicos partidarios de la panspermia molecular los que ven reforzadas sus posiciones gracias al hallazgo de la Stardust y del estudio que acaba de publicarse.

En cualquier caso, y por quitarle hierro al asunto, si quiere divertirse leyendo modelos alternativos desde un punto de vista excéntrico, pero bien fundamentado, no deje de leer el libro Los orígenes de la vida (Cambridge University Press, 1999), del físico, matemático y divulgador inglés Freeman J. Dyson. Les encantará, seguro.

 

Por MANUEL PEINADO LORCA

CATEDRÁTICO DE UNIVERSIDAD. DEPARTAMENTO DE CIENCIAS DE LA VIDA E INVESTIGADOR DEL INSTITUTO FRANKLIN DE ESTUDIOS NORTEAMERICANOS, UNIVERSIDAD DE ALCALÁ

Este artículo ha sido publicado originalmente en The Conversation

 

La evolución nos dice que es probable que seamos la única vida inteligente del universo

¿Estamos solos en el universo? La pregunta que se plantea es si la inteligencia es un resultado probable de la selección natural o un improbable golpe de suerte. Por definición, los acontecimientos probables se producen con frecuencia, mientras que los sucesos improbables tienen lugar pocas veces o una sola vez. La historia de nuestra evolución muestra que muchas adaptaciones de carácter crucial –no solo la inteligencia, sino también los animales y las células complejas, la fotosíntesis y la propia vida– fueron sucesos únicos y excepcionales y, por tanto, muy improbables. Nuestra evolución tal vez haya sido como ganar la lotería… solo que con una probabilidad mucho menor.

El universo es inmensamente grande. La Vía Láctea tiene más de 100 000 millones de estrellas, y en el universo observable, es decir, en la diminuta fracción de universo que podemos ver, hay más de un billón de galaxias. Aunque los mundos habitables son escasos, el número por sí solo —existen tantos planetas como estrellas, puede que más— invita a pensar que hay mucha vida ahí fuera. Si es así, ¿dónde se ha metido? Esta es la paradoja de Fermi. El universo es inmenso y viejo, y dispone de tiempo y espacio suficiente para que la inteligencia evolucione; sin embargo, no hay pruebas de que tal cosa ocurra.

¿Cabría pensar, sencillamente, que a lo mejor es poco probable que la inteligencia evolucione? Por desgracia, no podemos estudiar la vida extraterrestre para responder a esta pregunta. Pero sí podemos estudiar los casi 4.500 millones de años de historia que tiene la Tierra y observar cuándo se repite –o no– la propia evolución.

A veces la evolución se repite, de tal forma que pueden observarse especies diferentes que evolucionan de manera convergente hacia resultados similares. Si la propia evolución se repite con frecuencia, nuestra evolución podría ser un acontecimiento probable, incluso inevitable.

De hecho, existen ejemplos notables de convergencias evolutivas. El tilacino de Australia, también conocido como lobo marsupial o tigre de Tasmania, hoy extinguido, tenía una bolsa semejante a la de los canguros, pero, por lo demás, parecía un lobo, a pesar de que evolucionó a partir de un linaje de mamíferos diferente. También hay topos marsupiales, marsupiales hormigueros y ardillas planeadoras marsupiales. Es sorprendente comprobar cómo toda la historia evolutiva de Australia, con la diversificación que experimentaron sus mamíferos tras la extinción de los dinosaurios, es paralela a la de otros continentes.

Otros casos llamativos de convergencia son el delfín y el extinto ictiosaurio, que evolucionaron de forma similar para deslizarse por el agua, así como las aves, los murciélagos y los pterosaurios, que evolucionaron de manera convergente para volar.

También se observan convergencias en órganos independientes. Los ojos evolucionaron no solo en los vertebrados, sino también en los artrópodos, los pulpos, los gusanos y las medusas. Los vertebrados, los artrópodos, los pulpos y los gusanos, cada uno por su cuenta, desarrollaron mandíbulas. Por su parte, las patas evolucionaron de forma convergente en los artrópodos, los pulpos y cuatro tipos de peces (tetrápodos, peces sapo, rájidos, peces del fango).

Aquí está la trampa. Toda esta convergencia tuvo lugar dentro de un mismo linaje, los eumetazoos, que son animales complejos dotados de simetría, boca, tubo digestivo, músculos y un sistema nervioso. Hubo eumetazoos diferentes que desarrollaron soluciones similares a problemas similares, pero la compleja estructura corporal que lo hizo posible es única. Los animales complejos evolucionaron una sola vez en la historia de la vida, lo que da a entender que son improbables.

Sorprende constatar que muchos acontecimientos fundamentales de la historia de nuestra evolución son únicos y, seguramente, improbables. Uno es el esqueleto óseo de los vertebrados, que permitió que los animales grandes se desplazaran hacia la tierra. Las complejas células eucariotas de las que están compuestos todos los animales y plantas, y que contienen núcleos y mitocondrias, evolucionaron una sola vez. El sexo evolucionó una única vez. La fotosíntesis, que aumentaba la energía disponible para la vida y producía oxígeno, es un acontecimiento único. A este respecto, también lo es la inteligencia humana. Existen lobos y topos marsupiales, pero no hay humanos marsupiales.

Hay lugares donde la evolución se repite y otros donde no. Si solo nos fijamos en la convergencia, se crea un sesgo de confirmación. La convergencia parece ser la norma y nuestra evolución se presenta como algo probable. Sin embargo, cuando se presta atención a la no convergencia, se observa que está en todas partes, y las adaptaciones decisivas y complejas parecen ser las que menos se repiten, por lo que adquieren carácter improbable.

Además, estos acontecimientos dependían unos de otros. Los seres humanos no pudieron evolucionar hasta que los peces desarrollaron huesos que les permitieron arrastrarse hasta la tierra. Los huesos no pudieron evolucionar hasta que aparecieron los animales complejos. Los animales complejos necesitaban células complejas, y las células complejas necesitaban oxígeno, producido por la fotosíntesis. Nada de esto sucede sin la evolución de la vida, un acontecimiento singular entre acontecimientos singulares. Todos los organismos provienen de un solo antepasado; por lo que sabemos, la vida ocurrió una sola vez.

Es curioso observar que todo este proceso requiere un tiempo sorprendentemente largo. La fotosíntesis evolucionó 1.500 millones de años después de la formación de la Tierra; las células complejas, tras 2.700 millones de años; los animales complejos, al cabo de 4.000 millones de años; y la inteligencia humana, 4.500 millones de años después de que se formara la Tierra. El hecho de que estas innovaciones sean tan útiles pero tardaran tanto en evolucionar implica que son increíblemente improbables.

Una sucesión improbable de acontecimientos

Es posible que estas innovaciones puntuales, casualidades de importancia crucial, crearan una cadena de obstáculos o filtros evolutivos. De ser así, nuestra evolución no fue como ganar la lotería; fue como ganar la lotería una vez y otra y otra y otra. En otros mundos, es posible que estas adaptaciones decisivas hubieran evolucionado demasiado tarde para que la inteligencia apareciera antes de que sus soles se convirtieran en novas, o que no hubieran evolucionado en absoluto.

Supongamos que la inteligencia depende de una cadena de siete innovaciones improbables –el origen de la vida, la fotosíntesis, las células complejas, el sexo, los animales complejos, los esqueletos y la propia inteligencia–, y que cada una tiene un 10% de posibilidades de evolucionar. Las probabilidades de que la inteligencia evolucione pasan a ser 1 entre 10 millones.

Pero las adaptaciones complejas podrían ser incluso menos probables. La fotosíntesis necesitó una serie de adaptaciones en cuanto a proteínas, pigmentos y membranas. Los animales eumetazoos requirieron de múltiples innovaciones anatómicas (nervios, músculos, boca). Por tanto, es posible que cada una de estas siete innovaciones cruciales evolucione solo el 1% de las veces. En tal caso, la inteligencia evolucionará solamente en 1 de cada 100 billones de mundos habitables. Teniendo en cuenta que los mundos habitables son escasos, podríamos ser la única vida inteligente de la galaxia, o incluso del universo observable.

Así y todo, estamos aquí, y este hecho tiene que valer para algo, ¿no? Si la evolución tiene suerte 1 de cada 100 billones de veces, ¿cuáles son las probabilidades de que nos hallemos en un planeta donde la evolución tuvo lugar? En realidad, las probabilidades de estar en ese mundo improbable son del 100%, porque no podríamos tener esta conversación en un mundo donde la fotosíntesis, las células complejas o los animales no evolucionaran. Es el principio antrópico. La historia de la Tierra tiene que haber permitido que la vida inteligente evolucionara, pues, de lo contrario, no estaríamos aquí para plantearnos estas cuestiones.

La inteligencia depende, al parecer, de una cadena de acontecimientos improbables. Pero teniendo en cuenta la enorme cantidad de planetas, e igual que un número infinito de monos que golpean un número infinito de máquinas de escribir para redactar Hamlet, está destinada a evolucionar hacia alguna parte. El resultado improbable fuimos nosotros.

por Nick Longrich

Lector de Paleontología y Biología Evolucionaria en la Universidad de Bath

Lunes, 30 Septiembre 2019 05:47

Las mujeres de la tabla periódica

Las mujeres de la tabla periódica

La historia de la clasificación de docenas de elementos en una tabla periódica no se ciñe a una persona ni a un momento en el tiempo. Los científicos habían clasificado y predicho la existencia de los elementos antes de que Dimitri Mendeléiev propusiera su esquema en 1869, y siguieron haciéndolo después. Fueron muchos los que trabajaron para descubrir y explicar el comportamiento de las nuevas sustancias. Los gases nobles, la radiactividad, los isótopos, las partículas subatómicas y la mecánica cuántica todavía no se habían descubierto a mediados del siglo XIX.

Para celebrar el Año Internacional de la Tabla Periódica, dedicamos este artículo a algunas de las mujeres que revolucionaron nuestra concepción de los elementos. Marie Curie es la más famosa, por sus investigaciones sobre la radiactividad y el descubrimiento del radio y el polonio, que le valieron el Nobel en dos ocasiones. La mayoría, sin embargo, son poco conocidas. Tampoco suele apreciarse la tenacidad y diligencia que requiere el trabajo experimental, la valoración de datos y la reconsideración de las teorías vigentes.

Demostrar la existencia de un nuevo elemento no es tarea fácil. El primer paso consiste en detectar una actividad inusual; un comportamiento químico o una propiedad física (las emisiones radiactivas y las líneas espectrales, por ejemplo), que no se corresponda con la de ningún elemento conocido. Luego hay que aislar el nuevo elemento, o un compuesto de él, en cantidades lo suficientemente grandes como para poder pesarlo y convencer a la comunidad científica.

Descubrir y ordenar

Marie Curie no andaba a la búsqueda de nuevos elementos cuando inició su tesis doctoral sobre los «rayos del uranio», en 1897. Quería explorar la radiactividad, un fenómeno descubierto por Henri Becquerel en 1896. Pero sospechó de la existencia de otros elementos al observar que la radiactividad de la pechblenda, un mineral de uranio, era superior a la que cabía esperar de su contenido en uranio. Su marido Pierre se incorporó entonces a las investigaciones.

En 1898 identificaron las líneas espectrales de dos nuevos elementos: el radio y el polonio. Sin embargo, les llevó más de tres años pulverizar, disolver, hervir, filtrar y cristalizar toneladas de pechblenda para extraer tan solo 0,1 gramos de un compuesto de radio. La extracción del polonio sería aún más difícil, porque su vida media es más breve. En 1903, Pierre y Marie Curie compartieron el premio Nobel de física con Henri Becquerel por el descubrimiento de la radiactividad, y en 1911 Marie recibió un segundo Nobel por el descubrimiento del radio y el polonio y por la concentración y el estudio del radio.

Ubicar un elemento en la tabla periódica requiere establecer su peso atómico y sus propiedades químicas. El radio, por ejemplo, se comporta de modo muy similar al bario, pero su peso atómico es mayor, así que se sitúa justo debajo del bario. Determinar el peso atómico es difícil porque exige disponer de sustancias puras.

Cuesta distinguir elementos de peso y carácter similares. Poco después de elaborar su tabla, Mendeléiev propuso a la química rusa Julia Lermontova refinar los procesos de separación de los metales del grupo del platino (rutenio, rodio, paladio, osmio, iridio y platino), como paso previo a su ordenación. Solo sabemos de su trabajo a través del archivo y la correspondencia de Mendeléiev. Lermontova estudió química en Heidelberg con Robert Bunsen (descubridor del cesio y el rubidio en 1860, junto con Gustav Kirchhoff, con el espectroscopio que acababan de inventar), y fue la primera mujer que obtuvo un doctorado en química en Alemania, en 1874.

Establecer el peso atómico era, asimismo, crucial para identificar las series de desintegración radiactivas y distinguir entre nuevos elementos y las variedades de elementos conocidos. El concepto de isótopo solucionó el problema planteado por el descubrimiento de numerosos elementos para los que en apariencia no había espacio en la tabla periódica. Aunque el químico británico Frederick Soddy introdujo el concepto en 1913, fue la médica Margaret Todd quien propuso el término, que en griego significa «el mismo lugar».

La química polaco-judía Stefanie Horovitz, del Instituto de Radio de Viena, aportó la prueba experimental de la existencia de isótopos. Un elemento tan común como el plomo presentaba distintos pesos atómicos, según si procedía de la desintegración radiactiva del uranio o de la del torio.

También era problemática la naturaleza de una curiosa «emanación» del radio. ¿Era una partícula o un gas? La física canadiense Harriet Brook resolvió el problema junto con su director de tesis, Ernest Rutherford, en la Universidad McGill de Montreal. En 1901, Brooks y Rutherford mostraron que la emanación se difundía como un gas pesado y aportaron la primera prueba de que la desintegración radiactiva producía nuevos elementos. En 1907, William Ramsay sugirió que el gas, al que se denominaría radón, pertenecía al «grupo de los elementos del helio», que hoy conocemos como gases nobles.

En 1902, Rutherford y Soddy anunciaron su teoría de la desintegración radiactiva, según la cual los átomos se transmutan espontáneamente en nuevos átomos con la emisión de radiación. Si bien Rutherford obtuvo el Nobel de química de 1908 por estas investigaciones, la crucial contribución inicial de Brooks apenas ha sido reconocida. Tras publicar conjuntamente un primer artículo, el siguiente, en Nature, lo firmó Rutherford, que se limitó a indicar en los créditos la asistencia de Brooks. Como mujer de ciencia, Brooks tuvo dificultades, especialmente tras casarse, para obtener puestos estables y desarrollar sus investigaciones.

Al fondo de la materia

A todo esto, no dejaban de producirse avances en la comprensión del núcleo atómico. En 1918, la física Lise Meitner y el químico Otto Hahn descubrieron en Berlín el elemento 91, el protactinio. Meitner era austríaca y, tras completar su doctorado, había buscado en Alemania una oportunidad profesional. En 1907 fue admitida como colaboradora no remunerada de Hahn en el departamento de química de la Universidad de Berlín. Tuvo que trabajar en el sótano porque las mujeres no podían acceder al edificio principal. En 1913, cuando Hahn se incorporó al Instituto Emperador Guillermo de Química en Berlín-Dahlem, Meitner fue nombrada «asociada» del instituto.

Hahn y Meitner descubrieron el protactinio en el curso de una investigación sobre la «sustancia madre» de la serie de desintegración del actinio. Otros científicos perseguían el mismo objetivo e, inevitablemente, se produjeron disputas de prioridad. El descubrimiento fue atribuido a Meitner y Hahn porque concentraron el nuevo elemento en mayor cantidad y lo caracterizaron de forma más completa que sus competidores.

También el renio (elemento número 75) fue descubierto conjuntamente en 1925 en Berlín por la química alemana Ida Noddack y su marido, el también químico Walter Noddack, junto con Otto Berg, de la empresa de ingeniería eléctrica Siemens–Halske. Ida Tacke, que adoptaría el apellido de su marido, dejó un puesto en la industria química para ir a la caza de elementos. En 1925 se incorporó en calidad de investigadora no remunerada al Instituto Físico-Técnico Imperial de Berlín, donde Walter Noddack dirigía el departamento de química. Los Noddack tuvieron que emplearse a fondo para producir cantidades ponderables de renio, así denominado por el Rin. Es uno de los elementos más raros de la Tierra y no es radiactivo.

Los Noddack reclamaron asimismo el descubrimiento del elemento 43, al que denominaron masurio por la región de Masuria, en Polonia. Pero no consiguieron replicar las líneas espectrales ni aislar la sustancia. Las técnicas de la «química húmeda» no eran apropiadas para la identificación de este elemento, el primero en ser producido artificialmente, en 1937, y que recibiría el nombre de tecnecio.

A diferencia de Marie Curie, cuyas contribuciones fueron reconocidas y que tras la muerte de Pierre ocupó su cátedra en la Universidad de París, Ida Noddack trabajó como invitada en el laboratorio de su marido durante la mayor parte de su carrera. Esta es una de las razones por las que no se tomó en serio su sugerencia, en 1934, de que el núcleo podía partirse, un proceso que hoy denominamos fisión.

Los descubrimientos del neutrón, en 1932, y de la radiactividad artificial, en 1934, abrieron una nueva línea de investigación: la fabricación de elementos en el laboratorio mediante el bombardeo de átomos con partículas. En 1934, el físico Enrico Fermi y sus colaboradores en la Universidad de Roma anunciaron que habían producido los elementos 93 y 94 tras bombardear uranio con neutrones. Ida Noddack señaló en un artículo en Angewandte Chemie que Fermi no había demostrado que no se hubieran producido elementos más ligeros. «Es concebible», argumentó, «que el núcleo se haya dividido en varios fragmentos grandes». Los físicos la ignoraron.

Sin embargo, en 1938, Meitner y Hahn demostraron que el bario se encontraba entre los productos de las reacciones estudiadas por Fermi y que el núcleo se había partido. Para entonces, a falta de meses para que estallara la Segunda Guerra Mundial, Meitner, de ascendencia judía, había huido a Suecia. Pese a que sus cálculos habían convencido a Hahn de la fisión del núcleo, este no la incluyó como coautora al publicar los resultados en 1939, y en 1945 no aprovechó el discurso de aceptación del Nobel de química de 1944 para reconocer el papel de Meitner.

La mayoría de estas pioneras colaboraron con colegas masculinos, y no es fácil distinguir sus contribuciones. La física francesa Marguerite Perey es una excepción: se la considera la única descubridora del elemento 87, el francio, en 1939. Se incorporó al instituto de Marie Curie en París a los 19 años como técnica de laboratorio, bajo la dirección de Irène Joliot-Curie y André Debierne. Ambos le pidieron, independientemente, que midiera con precisión la vida media del actinio 227. En el curso de este delicado procedimiento técnico, identificó el nuevo elemento. Al no ponerse de acuerdo sobre quién dirigía a Perey, ninguno de ellos pudo reclamar un papel en el hallazgo. Perey acabaría dirigiendo el departamento de química nuclear de la Universidad de Estrasburgo, y en 1962 se convirtió en la primera mujer escogida como miembro correspondiente de la Academia de las Ciencias francesa. Pese a que no había ninguna regla que excluyera la elección de mujeres, la Academia no admitiría una mujer como miembro de pleno derecho hasta 1979.

El francio fue el último elemento natural en ser descubierto. Actualmente, el hallazgo de nuevos elementos requiere grandes equipos, aceleradores de partículas e importantes presupuestos [véase «Disputas en la tabla periódica», por Edwin Cartlidge; Investigación y Ciencia, mayo de 2019]. El significado de elemento químico ha cambiado. Si para Mendeléiev era una sustancia estable incapaz de transmutarse, hoy incluye especies isotópicas que existen apenas unos milisegundos.

Mediante esas técnicas, la química estadounidense Darleane Hoffman llevó a cabo un avance monumental a principios de los años setenta. Demostró que el fermio 257 se fisionaba espontáneamente, no solo al ser bombardeado con neutrones. También descubrió el plutonio 244 natural. Fue la primera mujer que dirigió una división científica en el Laboratorio Nacional de Los Álamos, en Nuevo México, donde se formaron generaciones de científicas. Una de ellas, Dawn Shaughnessy, es la investigadora principal de un proyecto sobre elementos pesados del Laboratorio Nacional Lawrence Livermore en California, en el marco del cual se han descubierto seis elementos (del número 113 al 118).

Usar los elementos

Muchas otras mujeres han contribuido a ampliar nuestro conocimiento sobre los elementos. Tras el aislamiento del flúor por el químico francés Henri Moissan en 1886, un equipo de mujeres (entre ellas, Carmen Brugger Romaní y Trinidad Salinas Ferrer) trabajó con José Casares Gil en la Universidad de Madrid en los años 1920 y principios de 1930 en el estudio de las propiedades terapéuticas y la presencia en las aguas minerales de este elemento. Cuando tuvieron que dejar las investigaciones como consecuencia de la Guerra Civil (1936-1939), el trabajo de estas mujeres fue incorporado a la bibliografía de Casares.

La química Reatha C. King fue la primera mujer afroamericana que trabajó en la Oficina Nacional de Estándares de los Estados Unidos, en Washington. En los años sesenta estudió la combustión de mezclas gaseosas de flúor, oxígeno e hidrógeno. La alta reactividad del flúor sugería su uso en la propulsión de cohetes. Algunas mezclas eran tan explosivas que requerían técnicas y aparatos especiales, que King diseñó y fueron adoptadas por la NASA.

En la década de 1910, la médica estadounidense Alice Hamilton demostró la toxicidad del plomo y los riesgos que entrañaba para la población y los trabajadores de la industria metalúrgica. Su trabajo obligó a las compañías de seguros y a las empresas a adoptar medidas de protección y compensar a los damnificados. También organizó acciones sociales para que se reconocieran las enfermedades laborales relacionadas con otros metales pesados, como el mercurio. En 1919 se convirtió en la primera profesora nombrada por la Universidad Harvard. Ya en 1925 se pronunció contra la adición de plomo a la gasolina.

La técnica japonesa-estadounidense Toshiko «Tosh» Mayeda era en los años 1950 una experta en la medida de los radioisótopos del oxígeno. Había empezado su carrera limpiando los recipientes de vidrio del laboratorio de Harold C. Urey en la Universidad de Chicago, pero pronto se hizo cargo de los espectrómetros de masa. Contribuyó a la medida de la proporción de isótopos de oxígeno en conchas marinas fosilizadas, a fin de deducir la temperatura de los océanos prehistóricos, y extendió el uso de este método a los meteoritos.

Como estadounidense de ascendencia japonesa, Mayeda fue confinada en un campo de internamiento tras el ataque a Pearl Harbor del 7 de diciembre de 1941, y tuvo que hacer frente a la discriminación. Contando solo con un título de graduada en química, sus contribuciones podían haber sido invisibilizadas, como las de tantas técnicas. Afortunadamente, Mayeda recibió el apoyo de sus superiores y su nombre apareció en las publicaciones junto al de doctores y catedráticos.

Ampliar la perspectiva

Como ocurre con los descubrimientos científicos, la recuperación de la historia de todas estas mujeres de ciencia ha sido un trabajo de equipo en el que han participado Gisela Boeck, John Hudson, Claire Murray, Jessica Wade, Mary Mark Ockerbloom, Marelene Rayner-Canham, Geoffrey Rayner-Canham, Xavier Roqué, Matt Shindell e Ignacio Suay-Matallana.

El estudio de las mujeres que han contribuido al desarrollo de la química ofrece una perspectiva más amplia del descubrimiento científico y de las personas que participan en él, desde ayudantes y técnicos no asalariados a líderes de grandes laboratorios. En este año de celebración de la tabla periódica, es esencial reconocer los esfuerzos individuales y colectivos que nos han permitido construirla y siguen dándole forma.

17/09/2019

Brigitte van Tiggelen

es historiadora de la química y directora para Europa del Instituto de Ciencia e Historia de Filadelfia

Annette Lykkness

es profesora de didáctica de la química e hisotriadora de la química en la Universidad Noruega de Ciencia y Tecnología, en Trondheim

Hallazgo de galaxias masivas antiguas desafía los modelos del universo

Astrónomos utilizaron el poder combinado de múltiples observatorios para descubrir un tesoro de galaxias masivas antiguas.

Se trata del primer hallazgo múltiple con tal abundancia de estas galaxias, que desafía los modelos actuales del universo.

También están íntimamente conectadas con agujeros negros supermasivos y la distribución de materia oscura, según publican en Nature.

 

El Hubble dio acceso sin precedente al universo nunca visto, pero incluso él no puede llegar a algunas de las piezas más fundamentales del rompecabezas cósmico. Los astrónomos del Instituto de Astronomía de la Universidad de Tokio querían ver algunas cosas que durante mucho tiempo sospecharon que podrían estar allí, pero que el telescopio no podía mostrar. Nuevas generaciones de observatorios astronómicos finalmente revelaron lo que buscaban.

"Es la primera vez que se confirma una población tan grande de galaxias masivas en los primeros 2 mil millones de años de la vida del universo, de 13 mil 700 millones de años. Éstos eran antes invisibles para nosotros. Este hallazgo contraviene los modelos actuales para ese periodo de evolución cósmica y ayuda a agregar algunos detalles que faltaban", sostuvo el investigador Tao Wang.

Luz muy tenue

Pero, ¿cómo puede ser invisible algo tan grande como una galaxia? “La luz de estas galaxias es muy tenue, con largas longitudes de onda invisibles para el ojo humano e indetectables para Hubble. Así que recurrimos al Atacama Large Millimeter/submillimeter Array (ALMA), ideal para ver estos elementos”, explicó el profesor Kotaro Kohno.

A pesar de que estas galaxias fueron las más grandes de su tiempo, su luz no sólo es débil, sino también se extiende debido a su inmensa distancia. A medida que el universo se expande, la luz que pasa se estira, por lo que la visible se alarga y se convierte en infrarroja. La cantidad de estiramiento permite a los astrónomos calcular a qué distancia está algo, lo que también indica hace cuánto tiempo fue emitida la luz que se observa.

“Fue difícil convencer a nuestros colegas de que las galaxias eran tan antiguas como sospechábamos. Nuestras teorías iniciales sobre su existencia provenían de los datos infrarrojos del telescopio Spitzer, pero ALMA reveló detalles en longitudes de onda submilimétricas, la mejor longitud de onda para mirar a través del polvo presente en el universo primitivo. Aun así, tomó más datos del imaginativamente llamado Telescopio muy Grande en Chile para demostrar realmente que estábamos viendo grandes masas de antiguas galaxias donde no se habían observado”, agregó Wang.

Cuerpos celestes cubiertos de polvo

Otra razón por la que estas galaxias parecen tan débiles es que las más grandes, incluso en la actualidad, tienden a estar cubiertas de polvo, lo que las oscurece más que a sus hermanos galácticos más pequeños.

"Cuanto más masiva es una galaxia, más lo es el agujero negro supermasivo en su corazón. Por tanto, el estudio de esos cuerpos y su desarrollo también dirá más sobre la evolución de los primeros. Asimismo, están íntimamente relacionadas con la distribución de materia oscura invisible, lo que tiene que ver en la configuración de su estructura y distribución. Los investigadores necesitarán actualizar sus teorías", precisó Kohno.

Lo que también es interesante es cómo estas 39 galaxias son diferentes a la nuestra. "Por un lado, el cielo nocturno parecería mucho más majestuoso. La mayor densidad de estrellas significa que habría muchas más cercanas al parecer más grandes y brillantes. Pero a la inversa, la gran cantidad de polvo significa que las más lejanas serían mucho menos visibles, por lo que el fondo de estos brillantes astros cercanos podría ser un gran vacío oscuro", sostuvo Wang.

Investigadores españoles descubren una nueva propiedad de la luz

 

Los resultados del estudio han sido publicados por la revista 'Science' y abren nuevas vías para la experimentación básica en torno a las dinámicas de las interacciones entre la luz y la materia.

 

 

Los científicos del Grupo de Investigación en Aplicaciones del Láser y Fotónica de la Universidad de Salamanca (ALF-USAL) Laura Rego, Carlos Hernández García, Luis Plaja y Julio San Román lideran la investigación internacional en la que se demuestra por primera vez que la luz puede forzar una torsión sobre sí misma en ausencia de fuerzas externas, una propiedad nunca antes vista hasta ahora en ella.

Los resultados del estudio, desarrollado en colaboración con la Universidad de Colorado y el Instituto de Ciencias Fotónicas de Castelldefels (ICFO), acaban de ser publicados por la revista Science y abren nuevas vías para la experimentación básica en torno a las dinámicas de las interacciones entre la luz y la materia.

En palabras de los científicos a Comunicación USAL, "lo más destacable de este trabajo es que hemos generado haces de luz con una nueva propiedad, el torque de la luz". Hasta la fecha se conocía que los haces de luz podían ser creados con torsión, es decir, con una estructura en forma de remolino alrededor de su eje de propagación.

Los vórtices de luz -como se conoce a los haces de luz con torsión- son análogos a los torbellinos que forma el viento y, al igual que estos, son capaces de ejercer fuerzas de rotación sobre los materiales.

El nuevo tipo de haz de luz demostrado por la USAL posee, además, la propiedad de acelerar su torsión en el tiempo, como un remolino que acelerase su rotación. No sólo gira por sí mismo, sino que, también es "capaz de aumentar la velocidad de su giro sin ayuda externa, auto acelerándose", subrayan los autores. Son, por lo tanto, vórtices que ejercen sobre sí mismos un torque, es decir, luz con auto-torque. La propiedad de autoinducirse un giro ha podido ser observada en otros sistemas físicos. No obstante, los científicos la definen como "algo exótico" que "nunca hasta este momento se había observado en luz", recuerdan.

Posibles aplicaciones

Los vórtices de luz tienen aplicaciones interesantes en diferentes ámbitos de la tecnología, si bien todavía a nivel experimental. Quizás la más relevante en relación con el estudio publicado es "la posibilidad de transferir giros a la materia", apuntan desde el Grupo ALF-USAL.

La luz con auto-torque es potencialmente útil para comunicar aceleraciones angulares (giros) en corrientes, por ejemplo, dentro de materiales conductores. Dado que los haces que se han producido son de alta frecuencia, se sugieren aplicaciones de este tipo en estructuras materiales nanoscópicas.

Se trata, por todo ello, de una nueva herramienta para estudiar la dinámica de las interacciones entre la luz y la materia, en la escala micro y nanoscópica. El dominio de la dinámica a estas escalas, mediante herramientas como los haces con torque, "es un paso fundamental para el desarrollo de la tecnología del futuro", concluyen los científicos.

Colaboración internacional

El estudio es fruto de la colaboración internacional llevada a cabo junto a la Universidad de Colorado (EEUU) y el Instituto de Ciencias Fotónicas (ICFO, Castelldefels). En la Universidad de Salamanca se desarrolló el concepto de torque de la luz y gracias a sus simulaciones teóricas diseñaron cómo generar, medir y controlar estos haces de luz.

Por su parte, los colaboradores de la Universidad de Colorado -equipo experimental formado Margaret Murnane y Henry Kapteyn, encabezado por Kevin Dorney- realizaron el experimento confirmando las predicciones teóricas y generando, de esta manera, por primera vez, haces de luz con auto-torque.

Asimismo, la colaboración de los investigadores del ICFO ayudó a analizar y comprender las propiedades de estos nuevos haces de luz, mientras que las simulaciones numéricas se llevaron a cabo en el Centro Nacional de Supercomputación (supercomputador MareNostrum) y en el Centro de Supercomputación de Castilla y León (SCAYLE)

27/06/2019 22:37 Actualizado: 27/06/2019 22:37

europa press

Página 1 de 5