Disco alrededor de la joven estrella donde se detectaron los signos del fenómeno.Foto Afp

Hasta ahora se han identificado miles de exoplanetas, pero poco se sabe acerca de cómo se forman, explican

 

Observaciones realizadas con el Telescopio Muy Grande (VLT, por sus siglas en inglés), del Observatorio Europeo Austral (ESO), captaron reveladoras señales del nacimiento de un sistema estelar. Alrededor de la joven estrella AB Aurigae hay un denso disco de polvo y gas en el que los astrónomos detectaron una estructura espiral prominente con un "giro" que marca el sitio donde se puede estar formando un planeta.

La característica observada podría ser la primera evidencia directa de un planeta recién nacido.

"Hasta ahora se han identificado miles de exoplanetas, pero poco se sabe sobre cómo se forman", afirmó Anthony Boccaletti, quien dirigió este estudio desde el Observatorio de París, Universidad PSL.

Los astrónomos saben que los planetas nacen en discos polvorientos que rodean a las estrellas jóvenes, como AB Aurigae, a medida que el polvo y el gas frío se amontonan. Las nuevas observaciones realizadas con el VLT, publicadas en la revista Astronomy & Astrophysics, proporcionan pistas cruciales para ayudar a los científicos a entender mejor este proceso.

"Necesitamos observar sistemas muy jóvenes para captar el momento en que se forman los planetas", señaló Boccaletti en un comunicado. Pero, hasta ahora, los astrónomos habían sido incapaces de obtener imágenes lo suficientemente nítidas y profundas de estos discos jóvenes para encontrar el punto exacto que marca el lugar donde puede estar naciendo un planeta.

Las nuevas imágenes presentan una impresionante espiral de polvo y gas alrededor de AB Aurigae, situada a 520 años luz de la Tierra, en la constelación de Auriga (el cochero). Este tipo de espirales indican la presencia de planetas recién nacidos, que "patean" el gas, creando "perturbaciones en el disco en forma de onda, algo así como la estela de un barco en un lago", explicó Emmanuel Di Folco, del Laboratorio de Astrofísica de Burdeos (LAB), en Francia, que también participó en el estudio.

Puntos de perturbación

A medida que el planeta gira alrededor de la estrella central, esta onda toma forma de brazo espiral. En la nueva imagen de AB Aurigae, la región amarilla espiral que se ve cerca del centro, intensamente brillante (que, respecto de su estrella, se encuentra a la misma distancia que Neptuno del Sol), es uno de estos puntos de perturbación en el que el equipo cree que se está formando un planeta.

Las observaciones del sistema AB Aurigae realizadas hace unos años con el Atacama ALMA, del que ESO es socio, proporcionaron los primeros indicios de que se estaban formando planetas alrededor de la estrella. En las imágenes de este instrumento, los científicos vieron dos brazos espirales de gas cerca de la estrella, que se encuentran dentro de la región interior del disco.

Luego, en 2019 y principios de 2020, Boccaletti y un equipo de astrónomos de Francia, Taiwán, Estados Unidos y Bélgica, se propusieron captar una imagen más clara dirigiendo hacia la estrella el instrumento Sphere del VLT de ESO, en Chile. Las imágenes son las más profundas del sistema AB Aurigae obtenidas hasta la fecha.

Con el potente sistema de captación de imágenes de Sphere, los astrónomos pudieron ver la luz más débil proveniente de los pequeños granos de polvo y las emisiones del disco interior. Así, confirmaron la presencia de los brazos espirales detectados por primera vez por ALMA y también vieron otra característica destacada: un "giro", que indica la presencia de un planeta formándose en el disco.

Ilustración del sistema triple HR 6819, donde se encuentra el agujero negro más cercano a la Tierra (Observatorio Europeo Austral (ESO).

Un equipo de astrónomos ha descubierto el agujero negro más cercano a nuestro Sistema Solar jamás detectado hasta la fecha, a “solo” 1 000 años luz de la Tierra. La región forma parte de un sistema estelar triple observable a simple vista.

 

El grupo, integrado por científicos del Observatorio Europeo Austral (ESO), la Universidad Estatal de Georgia (EE. UU.) y la Academia de Ciencias de la República Checa (Praga), encontró evidencias de la presencia de este objeto invisible rastreando a sus dos estrellas compañeras. Los investigadores afirman que este sistema podría ser sólo la punta del iceberg, ya que, en el futuro, podrían descubrirse muchos más agujeros negros similares. El estudio se publica en la revista Astronomy & Astrophysics.

“Nos sorprendimos mucho cuando nos dimos cuenta de que se trata del primer sistema estelar con un agujero negro que se puede ver a simple vista”, afirma Petr Hadrava, investigador emérito en la academia checa y coautor de la investigación. Situado en la constelación de Telescopium, el sistema —agrupación de estrellas que orbitan en torno a un punto común— está tan cerca de la Tierra que sus estrellas se pueden ver desde el hemisferio sur sin prismáticos ni telescopio en una noche oscura y despejada.

El equipo estudiaba la agrupación de ambos astros, llamado HR 6819, como parte de una investigación de sistemas de doble estrella. Las observaciones tomadas durante varios meses mostraban que una de las dos estrellas visibles orbitaba alrededor de un objeto invisible cada 40 días y la segunda estrella quedaba a una gran distancia de este par interior. Al analizar los datos quedaron sorprendidos al descubrir un tercer cuerpo previamente desconocido: un agujero negro.

El agujero negro oculto en HR 6819 es uno de los primeros de masa estelar —al menos tres veces la masa del Sol— descubierto que no interactúan violentamente con su entorno y, por lo tanto, parecen verdaderamente negros. Pese a ello, el equipo pudo detectar su presencia y calcular su masa, unas cuatro veces la de nuestra estrella, al estudiar la órbita de la estrella situada en el par interior.

Los astrónomos han detectado tan solo un par de docenas de agujeros negros en nuestra galaxia hasta la fecha. Casi todos ellos interactúan con su entorno y dan a conocer su presencia mediante la liberación de rayos X. El descubrimiento de uno silencioso e invisible proporciona pistas sobre dónde podrían estar los numerosos agujeros negros ocultos en la Vía Láctea.

De hecho, los astrónomos creen que su descubrimiento podría arrojar algo de luz sobre un segundo sistema. “Nos dimos cuenta de que otro sistema, llamado LB-1, también puede ser triple, aunque necesitaríamos más observaciones para afirmarlo con seguridad”, afirma Marianne Heida, investigadora del ESO en Garching (Alemania) y coautora del artículo.

“LB-1 está un poco más lejos de la Tierra, pero todavía lo bastante cerca en términos astronómicos, lo cual significa que probablemente existen muchos más sistemas como este. Al encontrarlos y estudiarlos podemos aprender mucho sobre la formación y evolución de esas estrellas”

6 mayo 2020

(Tomado de La Vanguardia)

Primera observación de estrella orbitando en elipse el agujero negro central de la Vía Láctea.Foto ESO/L Calçada Europa Press

Estrella y agujero negro en el centro de la Vía Láctea se mueven según su teoría

Observaciones realizadas con el Very Large Telescope (VLT) han revelado, por primera vez, que la estrella que orbita el agujero negro supermasivo que hay en el centro de la Vía Láctea, se mueve tal y como lo predijo la teoría de la relatividad de Einstein.

Su órbita tiene forma de rosetón (y no de elipse, como sugería la teoría de la gravedad de Newton). Este resultado tan buscado fue posible gracias a las mediciones, cada vez más precisas, llevadas a cabo a lo largo de casi 30 años, lo que ha permitido a los científicos desbloquear los misterios del gigante que acecha en el corazón de la Vía Láctea.

La relatividad de Einstein predice que las órbitas enlazadas de un objeto alrededor de otro no están cerradas, como en la gravedad newtoniana, sino que tienen un movimiento de precesión (respecto al eje) hacia adelante. Este famoso efecto –descubierto en la órbita del planeta Mercurio alrededor del Sol– fue la primera evidencia en favor de la relatividad general.

Pero 100 años después, los científicos han detectado el mismo efecto en el movimiento de una estrella que orbita la fuente de radio compacta Sagitario A*, en el centro de la Vía Láctea. "Este avance observacional fortalece la evidencia de que Sagitario A* debe ser un agujero negro supermasivo de cuatro millones de veces la masa del Sol", afirma Reinhard Genzel, director del Instituto Max Planck de Física Extraterrestre (MPE) en Garching (Alemania), y artífice del programa de 30 años de duración que ha llevado a este resultado.

Situado a 26 mil años luz del Sol, Sagitario A* y el denso cúmulo de estrellas que hay a su alrededor, proporcionan un laboratorio único para poner a prueba la física en un régimen de gravedad extremo e inexplorado. Una de estas estrellas, S2, se precipita hacia el agujero negro supermasivo desde una distancia de menos de 20 mil millones de kilómetros (120 veces la distancia entre el Sol y la Tierra), lo que la convierte en una de las estrellas más cercanas en órbita alrededor del gigante masivo.

En su aproximación más cercana al agujero negro, S2 atraviesa el espacio a casi 3 por ciento de la velocidad de la luz, completando una órbita una vez cada 16 años. "Tras seguir a la estrella en su órbita durante más de dos décadas y media, las mediciones detectan, de manera robusta, la precesión Schwarzschild de S2 en su camino alrededor de Sagitario A*", declara Stefan Gillessen, líder del análisis publicado ayer en la revista Astronomy & astrophysics.

La mayoría de las estrellas y planetas tienen una órbita no circular y, por lo tanto, se acercan y se alejan del objeto alrededor del cual giran. La órbita de S2 tiene un movimiento de precesión, lo que significa que la ubicación de su punto más cerca-no al agujero negro supermasivo cambia con cada giro, de modo que la siguiente órbita gira con respecto a la anterior, creando una forma de rosetón. La teoría de la relatividad proporciona una predicción precisa de cuánto cambia su órbita y las últimas mediciones de esta investigación coinciden exactamente. Este efecto, conocido como precesión Schwarzschild, no se había medido nunca antes en una estrella alrededor de un agujero negro.

El estudio realizado con el VLT, un telescopio del ESO (European Southern Research) ayuda también a saber más sobre los alrededores del agujero negro supermasivo del centro de la Vía Láctea. "Debido a que las mediciones de S2 se ajustan tan bien a la Relatividad General, podemos establecer límites estrictos sobre la cantidad de material invisible (como materia oscura o posibles agujeros negros más pequeños) que hay alrededor de Sagitario A*", señalan Guy Perrin y Karine Perraut, científicos franceses del proyecto, que añaden que esto permite "entender la formación y evolución del agujero negro".

Este resultado es la culminación de 27 años de observaciones de la estrella S2 utilizando, durante la mayor parte de este tiempo, una flota de instrumentos instalados en el VLT de ESO, ubicado en el desierto de Atacama, en Chile. El número de puntos de datos que marcan la posición y la velocidad de la estrella atestigua la minuciosidad de esta investigación: más de 330 mediciones con instrumentos Gravity, Sifoniy Naco. Dado que S2 tarda años en orbitar el agujero negro supermasivo, fue crucial seguir a la estrella durante casi tres décadas.

Más predicciones acertadas

La investigación fue realizada por un equipo internacional liderado por Frank Eisenhauer, del MPE, con colaboradores de Francia, Portugal, Alemania y ESO. El equipo conforma la colaboración Gravity, que lleva el nombre del instrumento que desarrollaron para el Interferómetro VLT, que combina la luz de los cuatro telescopios VLT de ocho metros formando un súpertelescopio (con una resolución equivalente a la de un telescopio de 130 metros de diámetro).

El mismo equipo dio a conocer, en 2018, otro efecto predicho por la teoría de la relatividad: vieron la luz recibida de S2 estirándose a longitudes de onda más largas a medida que la estrella pasaba cerca de Sagitario A*.

"El resultado anterior demostró que la luz emitida por la estrella experimenta la relatividad general. Ahora hemos establecido que la propia estrella sufre los efectos de la relatividad general", afirma Paulo García, investigador del Centro de Astrofísica y Gravitación de Portugal y uno de los científicos principales del proyecto Gravity.

El científico chileno espera que grandes incógnitas de la astronomía se resuelvan en el siglo XXI.

 

José Maza sostiene, en entrevista, que 5% del universo es materia común, 25 materia oscura y 70 energía oscura, "que no sabemos qué es"

 Un humano de sapiencia académica dice a miles de kilómetros de distancia: "estamos viviendo días extraños".

Desde su natal Chile, en una llamada telefónica, comparte: "tengo siete décadas en el planeta y nunca había vivido algo así". Se refiere a la pandemia, por lo que propone reflexionar sobre lo importante: "el amor, la amistad y la solidaridad", ya que siempre estamos "corriendo, buscando quimeras que no sirven para nada".

Confía en la ciencia para evitar más muertes. Recuerda que la historia ha revelado su importancia en la vida porque, cuando él era niño, en su natal Valparaíso, el promedio de vida no era de más de 50 años. Pero hoy día, la cifra casi se duplica. Él lo confirma con su mamá, española republicana que llegó al Cono Sur como exiliada del franquismo. Tiene 91 años y eso es "gracias a la ciencia".

José María Maza Sancho, uno de los más reconocidos astrónomos de Latinoamérica, dice que la investigación sirve "para que estemos vivos".

Además de su reconocimiento académico, José Maza está investido honoris causa por la universidad más importante: la de la vida. Valga la metáfora para el Premio Nacional de Ciencias Exactas 1999, punta de lanza de una generación de brillantes astrónomos, y quien ha destacado como un gran divulgador, que ha "tenido la paciencia de escribir libros", como Somos polvo de estrellas, que se ha editado unas 22 veces y que la temporada de contingencia detuvo su promoción. Se edita bajo el sello Planeta.

Uno de los grandes asuntos de la ciencia, asegura el astrónomo, es que el ser humano no se reconoce como parte del universo, pero "somos fabricados de átomos, igual que las estrellas".

A través de las evidencias

El doctor explica: "lo lindo es que la ciencia a través de evidencias nos ha hecho ver que los átomos de nuestro cuerpo, de la Tierra, de todo lo que nos rodea, fueron hechos en el interior de una estrella. Venimos de ellas", sostiene el experto, autor de unos 120 artículos y libros como Astronomía contemporánea y Supernovas.

Lo que publica Maza en su libro es lo que han dicho varios: que no sólo estamos unidos con el universo, sino que estamos conectados con las estrellas, que son las primeras que nacen y que no tienen otros elementos que el hidrógeno y el helio, y en su interior es donde se fragua lentamente, primero más helio, luego carbón, nitrógeno, oxígeno... y todos los elementos químicos que constituyen lo que nos rodea”.

Hay que recordar que "siete mil millones de personas en el planeta estamos unidos, pero también somos parte de un todo más grande: el universo".

Carl Sagan decía que somos "material estelar" y María Teresa Ruiz planteaba en un libro que somos "hijos de las estrellas".

Ahora, en su cita editorial, Maza asevera: "la historia cambia de nombre, pero el contenido es el mismo: todos los átomos que componen nuestro cuerpo, salvo el hidrógeno, han sido fabricados al interior de una estrella".

Origen del tiempo y el espacio

El tiempo, el espacio y la materia se originaron con una explosión inicial: el Big Bang, hace 13 mil 800 millones de años.

“Todo lo que podemos ver con los telescopios más grandes del mundo está reducido a un punto que una vez explotó. No hay antes del Big Bang, en el estricto rigor; pero yo debería decir: no lo sabemos. Si hubo algo antes de que todo lo que vemos fuera un punto, no podemos indagarlo. De alguna manera es parecido como la historia de cada uno de nosotros.”

Simplifica: “les digo a los jóvenes en mis conferencias: ¿qué hacían, por ejemplo, en 1970? Muchos me ven con asombro y aseguran que aún no nacían. Pues le respondo que yo no estaba en la Primera Guerra Mundial, porque mi historia comienza después. La historia de cada uno de nosotros empieza en el momento de nuestro alumbramiento. Entonces, no puedo indagar de mi vida hasta el minuto en qué nací, no puedo ir más atrás. Lo mismo pasa con el universo: no puedes ir atrás del Big Bang porque no hay ninguna manera de indagar”.

De acuerdo con José Maza, preguntarse qué había antes no es un tema para la ciencia, que “no es meditación trascendental. Son datos. El antes del Big Bang creo que es una manera entretenida de conversación entre filósofos o teólogos”.

La ciencia, asegura el divulgador, es como "una investigación de detectives tipo Sherlock Holmes, quien iba al lugar, entrevistaba y juntaba evidencias. No meditaba sobre el crimen. La ciencia es una investigación permanente. Primero, se hace una hipótesis, que diga: creo que esto debe ser así y asá, y otros colegas, en otro lado, comienzan a probar si es verosímil o no, y en la medida en que todo mundo va acumulando datos, se va estableciendo una verdad".

José Maza destaca algunas de las grandes incógnitas de la astronomía, como las de la materia y la energía oscuras, que "espero se resuelvan en el siglo XXI".

Argumenta: "la materia común y corriente es alrededor de 5 por ciento de todo lo que hay (lo que han captado todo tipo de instrumentos astronómicos); 25 por ciento es materia oscura, y el 70 por ciento restante es la energía oscura. Los astrónomos lo único que vemos es la materia común y a partir de lo que vemos en ella, tenemos que deducir qué hace la materia oscura (que no la vemos), y también tenemos que inferir qué es y cuál es la cuantía de la energía oscura. Confío en que en los 10 años próximos deberíamos saber en qué consiste la materia oscura".

Recalca: "70 por ciento de la energía total del universo proviene del espacio vacío, a lo que llamamos energía oscura, que, a decir verdad, no tenemos la menor idea de qué es, pero posiblemente esté acelerando la expansión del universo".

Respecto de la materia oscura, se hacen investigaciones, como las del Consejo Europeo para la Investigación Nuclear (CERN, por su siglas en francés) con su Gran Colisionador de Hadrones, la máquina más grande construida por el ser humano, con la que se descubrió en 2012 la partícula llamada bosón de Higgs.

"El bosón de Higgs es sólo una más de entre un zoológico de partículas, las cuales tienen características que las hacen únicas. Entonces, puede que en el CERN encuentren partículas que correspondan a la materia oscura", comenta.

Tema más difícil

Ahora, dice Maza "la energía oscura es un tema más difícil y no sé si en 20 años vamos a tener una respuesta a su enigma".

Otra interrogante "es saber si podemos reconocer algún planeta que esté girando en torno a otra estrella. Todos los telescopios grandes quieren responder si hay vida en los exoplanetas, como los han llamado".

Le han preguntado comúnmente al doctor qué se necesita para ser un científico. A lo que siempre responde: "tienes que ser una persona inquieta, que no se conforma con las respuestas que le dan, pero sobre todo ser alguien que le guste aprender toda la vida. Eso es curiosidad intelectual. Y algo esencial: no se trata de motivar a los ya motivados, sino de motivar a los niños, que son libros en blanco que están por ser escritos".

Descubren origen de las estructuras de proteínas, base de la vida en la Tierra

Investigadores de la Universidad de Rutgers descubrieron los orígenes de las estructuras de proteínas que controlan el metabolismo: moléculas simples que impulsaron la vida temprana en la Tierra y sirven de señales químicas que se podrían usar para buscar vida en otros planetas.

Su estudio, que predice cómo eran las primeras proteínas hace entre 3 mil 500 y 2 mil 500 millones de años, se publica en la revista Proceedings, de la Academia Nacional de Ciencias de Estados Unidos.

Los científicos analizaron, como un rompecabezas de miles de piezas, sobre la evolución de las enzimas (proteínas) desde el presente hasta el pasado remoto. La solución requería dos piezas faltantes, y la vida en la Tierra no podría existir sin ellas. Al construir una red conectada por sus roles en el metabolismo, el equipo las descubrió.

"Sabemos muy poco acerca de cómo comenzó la vida en nuestro planeta. Este trabajo nos permitió vislumbrar en el tiempo y proponer las primeras proteínas metabólicas", explicó Vikas Nanda, coautor del trabajo y profesor de bioquímica y biología molecular en la Escuela de Medicina Robert Wood Johnson de Rutgers y miembro residente de la facultad del Centro de Biotecnología y Medicina Avanzada.

“Nuestras predicciones serán probadas en el laboratorio para comprender mejor los orígenes de la vida en la Tierra e informar cómo puede originarse en otros lugares –añade–. Construimos modelos de proteínas en el laboratorio y probamos si pueden desencadenar reacciones críticas para el metabolismo temprano”.

Un equipo de científicos dirigido por Rutgers llamado Enigma (Evolution of Nanomachines in Geospheres and Microbial Ancestors) realiza investigación con una subvención del Programa de Astrobiología de la NASA. El proyecto busca revelar el papel de las proteínas más simples que catalizaron las primeras etapas de la vida.

"Creemos que la vida surgió a partir de bloques de construcción muy pequeños, como un conjunto de Lego para hacer células y organismos más complejos como nosotros", señaló Paul G. Falkowski, autor principal del estudio, investigador de Enigma y profesor distinguido en la Universidad de Rutgers-New Brunswick, quien lidera el Laboratorio de Biofísica Ambiental y Ecología Molecular.

"Creemos que hemos encontrado los componentes básicos de la vida: el conjunto de Lego que condujo, en última instancia, a la evolución de las células, los animales y las plantas", agregó.

El equipo de Rutgers se centró en dos "pliegues" de proteínas que probablemente sean las primeras estructuras en el metabolismo temprano. Son uno de ferredoxina que une compuestos de hierro y azufre, y otro Rossmann, que une nucleótidos (los bloques de construcción de ADN y ARN). Estas son dos piezas del rompecabezas que deben encajar en la evolución de la vida.

Las proteínas son cadenas de aminoácidos y la ruta 3D de una cadena en el espacio se llama pliegue.

Por Europa Press

ALMA está compuesto por 66 antenas de alta precisión ubicadas en el llano de Chajnantor, a 5.000 metros de altitud en el norte de Chile. ALMA

Los astrónomos inician una nueva era de descubrimientos en Chile gracias a una nueva configuración de las antenas situadas a kilómetros de distancia entre sí

Los astrónomos han comenzado a usar, por primera vez, la mayor separación posible entre las 66 antenas del radio telescopio ALMA, ubicado en el árido desierto de Atacama, en el norte de Chile, manteniéndolas a una distancia de 15 kilómetros entre sí. ¿El resultado? La mayor nitidez alcanzable con este observatorio capaz de investigar el universo frío, aquel que, a diferencia de estrellas y galaxias, no podemos ver con los telescopios convencionales.

Científicos del Instituto de Astrofísica de la Pontificia Universidad Católica (IA-PUC) y del Centro de Astrofísica y Tecnologías Afines (CATA), en Chile, han logrado con la nueva configuración obtener la imagen más nítida del gas frío ubicado la región central de un choque de galaxias, un gas que alimenta simultáneamente a dos monstruosos agujeros negros supermasivos a 360 millones años luz de nuestro planeta.

Se trata de dos galaxias –algunos expertos hablan de que serían tres- que se encuentran en proceso de colisión en la constelación de Ofiuco, dando origen a una nueva galaxia conocida como NGC 6240. Este proceso es un adelanto de lo que ocurrirá en nuestra propia Vía Láctea cuando se fusione con la vecina Andrómeda, en unos 5.000 millones de años de distancia. De ahí el interés por pasa en este sistema, donde el comportamiento de los agujeros negros es diferente al que había sido predicho desde hace un par de décadas, cuando se comenzó a observar esta formación.

Visión poderosa

Una técnica conocida como “interferometría”, similar a la que se utilizó para obtener la primera imagen del evento de horizonte de un agujero negro en 2019, es la que está permitiendo realizar todos estos hallazgos. La diferencia es que, en el caso del primer agujero negro fotografiado, se utilizaron observatorios en diversos lugares del mundo, con una separación no de decenas, sino de miles de kilómetros.

Ezequiel Treister, astrónomo IA-PUC que lideró la investigación, lo explica: “Sabíamos que utilizar esta técnica abriría la puerta a un universo de nuevos descubrimientos en astronomía. Cuando se combina la luz de más de un receptor, como es el caso de ALMA con 66 antenas, mayor separación entre ellos equivale a mayor nitidez”.

Para tener una idea, podemos comparar esta configuración de antenas con la apertura del espejo en un telescopio convencional como el Hubble. En estos telescopios ópticos, la apertura del espejo, o su diámetro, es la que define el detalle de las imágenes que se obtienen: cuanto más grande sea la apertura, mayor detalle. “La configuración en ALMA tenía antenas con una distancia máxima de 15 kilómetros. Eso permite obtener un detalle de imagen igual al que se conseguiría si tuviéramos un telescopio entero de 15 kilómetros de tamaño/apertura”, explica Hugo Messias, astrónomo de ALMA que participó de la investigación.

Ezequiel Treister cuenta que el trabajo comenzó en 2015, después de una reunión de astrónomos en el Instituto Tecnológico de California, Caltech, donde junto a otros colegas comenzaron a planear propuestas para ALMA. “Las observaciones recién se pudieron realizar en septiembre de 2017. No era fácil hacer coincidir la configuración correcta de las antenas con las condiciones climáticas adecuadas. Y después vino el análisis de los datos. Fueron dos años de intenso trabajo, codo con codo con expertos colaboradores de todas partes del mundo”, relata el astrónomo.

A comienzos del pasado enero, desde las remotas islas de Hawái, donde se desarrollaba la reunión número 235 de la sociedad astronómica estadounidense, se dieron a conocer los resultados de esta investigación, que arroja luces sobre el destino que correrá nuestra propia galaxia.

Turbulenta colisión

Un misterio que se pudo resolver fue el que existía en torno al tamaño de los agujeros negros. “Se pensaba que eran demasiado masivos en proporción a sus galaxias, ya que, al medir sus masas, era imposible separarlos de otro material en la región central, como gas y estrellas”, explica Treister. La investigación pudo medir directamente las masas de los agujeros, concluyendo que corresponden a entre 500 y 1.000 millones de veces la del Sol, unas 100 veces más grande que el que encontramos en el centro de la Vía Láctea, pero proporcionales a lo que se espera para el tamaño de sus galaxias.

También se pudo entender la configuración del gas que se ubica entre los dos agujeros negros: forman una especie de filamento de gas molecular que los une a una distancia similar a la de la Tierra con Próxima Centauri, (la estrella más cercana a nuestro planeta ubicada a cuatro años luz). “Lo que descubrimos sin duda nos sorprendió. En vez del disco rotante predicho hace 20 años, ahora veíamos claramente un filamento de gas uniendo los dos agujeros negros. Esta estructura parece estar estática, pero no lo está”, agrega Franz Bauer, astrónomo del Instituto de Astrofísica de la Universidad Católica que también participó de la investigación.

Estos revolucionarios datos nos indican que la mayor parte del gas detectado se localiza en la región entre los dos agujeros negros y que hay tal cantidad que equivaldría a 10.000 millones de masas solares o unas 15 veces más que todo el gas que encontramos en la Vía Láctea. Parte de este gas es expulsado por intensos vientos a velocidades de alrededor de 500 kilómetros por segundo o más. “Pensamos que, eventualmente, gran parte del gas será expulsado de la región central de la galaxia, mientras que una fracción relativamente pequeña caerá al interior del agujero negro, alimentándolo”, dice Franz Bauer.

A futuro, el potencial de esta técnica de observación es enorme. Una buena parte de las regiones del espacio que no hemos podido ver hasta ahora se hallan “ocultas”, debido al polvo existente en las regiones centrales de las galaxias: este absorbe la luz óptica, lo que explica por qué al observar hacia el centro de la galaxia se aprecia mayormente oscuridad. Una auténtica pared de polvo que hemos aprendido a atravesar y que comienza, de a poco, develar todos sus secretos.

Por Ricardo Acevedo

Santiago de Chile 27 ENE 2020 - 18:44 COT

Imagen del cometa Churyumov–Gerasimenko tomada de cerca por la sonda Rosetta en 2014./ESA/ROSETTA/NAVCAM

Nuevas observaciones apoyan la llegada de material espacial precursor de vida a la Tierra.

El fósforo es mucho más que aquel nombre común de la cerilla, ya pasado de moda. Es un elemento químico indispensable para la vida, una parte crucial del ADN y el ARN así como de otras estructuras básicas de la biología molecular. En el ser humano es el segundo mineral más abundante y constituye el 1% del peso corporal. Por eso no es de extrañar que los investigadores se pregunten de dónde viene y cómo llegó a la Tierra tanta cantidad de fósforo, porque en el Universo su abundancia es mucho menor que en los seres vivos. Ahora, los astrónomos han hallado una posible ruta que va de la síntesis del fósforo en estrellas masivas en tiempos antiguos a su presencia en la Tierra y sobre todo en la vida que alberga.

El trabajo se basa en un estudio a distancia a través del conjunto de telescopios ALMA en una región de formación estelar en la constelación de Auriga así como en las medidas in situ de un cometa por los instrumentos de la sonda Rosetta. Se cree que el fósforo se formó en las estrellas y luego se extendió por el Universo cuando algunas de éstas explotaron en forma de supernova.

El equipo de investigadores, liderado por Víctor Rivilla, encontró que algunas estrellas jóvenes y masivas crean cavidades en la nube interestelar en la que se encuentran y allí se forman moléculas que contienen fósforo, especialmente de monóxido de fósforo. El mecanismo de formación combinaría la radiación con pulsos de energía emanados de la joven estrella.

De allí, las moléculas pueden anclarse en gránulos de polvo helado que lleguen a formar parte de cometas. Según su hipótesis, los elementos básicos de la vida habrían llegado a la Tierra en el bombardeo del naciente planeta por cometas. Cuando Rosetta, de la Agencia Europea del Espacio (ESA) se acercó y acompañó al cometa Churyumov–Gerasimenko a partir de 2014 a lo largo de su máxima aproximación al Sol, se hicieron muchas medidas y se encontraron indicios de fósforo. Ahora, el análisis en profundidad de los datos ha permitido confirmar la presencia de monóxido de fósforo en el cometa.

“La combinación de los datos de ALMA y de Rosetta ha revelado una especie de hilo químico durante todo el proceso de formación estelar, en el que el papel protagonista corresponde al monóxido de fósforo”, explica el italiano Victor Rivilla, que ha dirigido el estudio, publicado en Monthly Notices of the Royal Astronomical Society. Rivilla recuerda que la vida apareció en la Tierra hace unos 4.000 millones de años, pero que todavía no comprendemos los procesos que la hicieron posible.
“El fósforo es esencial para la vida que conocemos”, señala Kathrin Altwegg, investigadora principal del instrumento Rosina de Rosetta, que hizo las medidas. “Dado que los cometas probablemente trajeron grandes cantidades de compuestos orgánicos a la Tierra, el monóxido de fósforo encontrado en el cometa puede fortalecer el vínculo entre los cometas y la vida en la Tierra”.

El cometa estudiado es de la familia de cometas de Júpiter y tiene un periodo de 6,5 años. Se cree que se acercó mucho al planeta gigante en 1959, lo que cambió su órbita. Tiene un núcleo de dos lóbulos y una dimensión máxima de 4,3 kilómetros. Rosetta mostró que bajo su superficie polvorienta hay material helado que apenas ha sufrido cambios desde que se formó antes que el Sol a partir del disco protoplanetario que dio lugar al Sistema Solar actual, lo que lo convierte en un sujeto ideal para trazar la ruta de los elementos químicos.

Para la observación con ALMA, se utilizaron 40 de sus antenas (situadas en Chile). Los espectros obtenidos mostraron la presencia de fósforo en las paredes de las cavidades citadas, en forma de óxido y de nitruro, lo que confirma que se puede sintetizar en el medio interestelar. Las estrellas no se suelen formar de una en una y el Sol probablemente no fue una excepción, explican los astrónomos del Observatorio Europeo Austral(ESO) y otras instituciones.

El cometa probablemente heredó la composición de la nebulosa en la que se formó, y en ella predomina también el óxido de fósforo, que estaría presente desde entonces dentro del cometa, y además en mayor proporción debido a su falta de reacción con otros elementos, en especial el hidrógeno. En cuanto a cómo llegó a la Tierra en cantidad suficiente para la vida, la concentración de fósforo en la corteza terrestre se estima en 930 partes por millón, aunque en gran parte no se puede utilizar en procesos biológicos porque está encerrado en minerales insolubles. Una fuente adicional serían los meteoritos y los cometas como el que estudió Rosetta de cerca.

Una arquea de Asgard vista a través del microscopio. NATURE

Científicos japoneses observan por primera vez arqueas de Asgard, microbios cuyos ancestros dieron el primer paso para la aparición de animales y plantas hace 2.000 millones de años

Tras casi 15 años de trabajo, científicos japoneses han conseguido por primera vez sacar del fondo del mar y criar en cautividad arqueas de Asgard, el misterioso organismo que puede explicar el origen de todas las formas de vida complejas de la Tierra, incluidos los humanos.

Todos los seres vivos que podemos ver a simple vista están hechos de los mismos ladrillos: células complejas con orgánulos internos llamadas eucariotas. Una persona es un conjunto de 30 billones de células eucariotas que cooperan entre sí con un objetivo común. Todas las plantas, animales y hongos son eucariotas.

En la Tierra hay otros dos grandes dominios de la vida, el de las bacterias y el de las arqueas. Estas últimas, más primitivas, sin orgánulos internos, son el dominio más misterioso e interesante, pues desde hace unos años se piensa que hace unos 2.000 millones de años una arquea se tragó a otro microbio, lo asimiló y se transformó en la primera célula compleja. Fue el primer paso hacia nosotros, y aún no se sabe cómo sucedió.

En 2015, científicos escandinavos que rastreaban las profundidades del océano descubrieron las arqueas de Loki, a las que bautizaron en honor al dios nórdico. No tenían de ellas más que su ADN, pues resultaba imposible aislar y criar en el laboratorio estos microbios que viven a más de 3.000 metros de profundidad bajo el mar. Sus genes indicaban que estas arqueas eran los parientes más cercanos de todos los eucariotas y que tenían genes esenciales para realizar funciones básicas de la vida eucariota, aunque en teoría no los necesitaban.

Desde entonces se han descubierto otras arqueas similares —Thor, Odin, Heimdal, Hel— que  manejan genes eucariotas y a las que se ha agrupado en la familia de Asgard, el hogar de los dioses vikingos. Hasta ahora nadie sabía qué aspecto tienen estos probables descendientes de nuestro primer ancestro.

En 2006, el equipo de Hiroyuki Imachi, del Instituto de Ciencia y Tecnología del Mar y la Tierra de Japón, extrajo sedimento marino de la fosa de Nankai, frente a la costa sur de la principal isla de Japón. Era un hábitat a 2.500 metros de profundidad, con dos grados de temperatura, en completa oscuridad, un territorio más hostil y desconocido que la superficie de Marte. Al analizar las muestras los científicos se dieron cuenta de que contenían arqueas de Asgard. Tenían en su mano ser los primeros en criar y observar a una de estas criaturas viva.

Durante cinco largos años intentaron que crecieran en un biorreactor, un aparato que reproduce su hábitat natural y aporta nutrientes y que funciona parecido a las máquinas de café por goteo, en palabras del propio Imachi. Después pasaron otros siete años engrosando las comunidades hasta poder aislarlas y mirarlas al microscopio. Esta semana, el científico y el resto de su equipo publica el estudio en el que relatan su éxito al haber conseguido ver por primera vez uno de estos organismos vivos. La clave, dice Imachi, ha sido dejar que las arqueas creciesen junto a otros microbios de su entorno y añadir un ingrediente inusual: leche de fórmula para bebés. “Aunque aún no lo hemos confirmado, es muy posible que estas arqueas estén usando alguno de los ingredientes de la leche en polvo para bebés como alimento”, explica Imachi.

Las arqueas de Asgard miden una diezmilésima de centímetro y se reproducen muy despacio para los estándares de un microbio, más o menos una vez al mes. Lo más llamativo son sus largos tentáculos entrelazados. Los científicos aún no saben para qué los usan, pero creen que son esenciales para explicar cómo surgió la vida compleja a partir de organismos muy parecidos a estos.

Según su teoría, expuesta en Nature, el ancestro de los eucariotas era una arquea similar a la de Asgard. La vida compleja surgió siguiendo lo que ellos llaman las tres “es”. Primero la arquea enredó a una bacteria con sus tentáculos, después la engulló, y por último la endogenizó, es decir, estableció con ella una relación de cooperación para intercambiarse nutrientes conocida como sintrofía. La bacteria, que hasta entonces era un organismo independiente, se transformó en una mitocondria, un orgánulo para aportar energía a su huésped. Imachi le ha dado un nuevo nombre a los organismos que sacaron de la fosa de Nakai: arquea Prometeo (Prometheoarchaeum syntrophicum), por el ser mitológico que robó el fuego —la energía— a los dioses para dárselo a los humanos. 2.000 millones de años después, las mitocondrias siguen presentes en todas las células eucariotas con idéntica función. El origen de la vida compleja fue la cooperación.

“Nadie puede retroceder 2.000 millones de años y ver qué sucedió exactamente, pero sí podemos hipotetizar cómo surgimos los eucariotas a partir de los microbios y nosotros lo hemos hecho gracias al primer cultivo vivo de estas arqueas y en el conocimiento previo que teníamos del origen de los eucariotas”, explica Imachi.

La hipótesis de Imachi concuerda con lo que teorizó a finales de los sesenta la bióloga Lynn Margulis, que dijo que las mitocondrias y los cloroplastos que ayudan a las plantas a alimentarse de luz nacieron por simbiosis. En 1999, la bióloga española Purificación López-García teorizó que los eucariotas aparecieron por una alianza de sintrofía con bacterias. Los científicos japoneses han observado que las arqueas descubiertas se alimentan de aminoácidos y que para poder digerirlos establecen alianzas sintrofía con las bacterias de su entorno, que les aportan pequeñas cantidades de oxígeno. Por eso Imachi solo fue capaz de criarlas cuando les dejó vivir y cooperar junto a sus compañeras.

Tal vez esa necesidad de oxígeno bacteriano fue mucho mayor hace 2.000 millones de años, cuando la Tierra comenzó a llenarse de este compuesto, según apuntan Christa Schleper y Filipa Sousa, expertas en arqueas de la Universidad de Viena, en un comentario al estudio. Y para entonces es probable que las arqueas ya tuviesen parte de la maquinaria genética para leer y transcribir ADN que necesitaban para transformarse en células complejas.

“No me parece correcto decir que este organismo es el eslabón perdido entre la vida sencilla y la compleja, pero tiene todo el sentido que algo muy parecido a lo que describe este estudio fuese el inicio de todo”, opina Iñaki Ruiz-Trillo, investigador del Instituto de Biología Evolutiva de Barcelona (CSIC-UPF). “Este trabajo tiene un mérito brutal”, añade.

Las arqueas de Asgard son seres actuales que han evolucionado durante 2.000 millones de años y por tanto no son iguales a sus ancestros. “Es evidente que no vamos a poder presenciar todo ese proceso evolutivo observando a estas arqueas”, comenta Juli Peretó, experto en biología sintética de la Universidad de Valencia, pero añade que “gracias a ellas tenemos un primer fotograma de esa evolución y, probablemente, tendremos más”.

Imachi explica que a partir de ahora tiene dos objetivos: criar otras especies de arqueas de Asgard y averiguar para qué utilizan sus misteriosos tentáculos.

Por NUÑO DOMÍNGUEZ

18 ENE 2020 - 04:14 COT

Viveros estelares interconectados forman la mayor estructura gaseosa de la Vía Láctea

El hallazgo modifica la visión de 150 años de las guarderías // En lugar de ser anillos en expansión, es un filamento ondulado

 

Astrónomos de Harvard descubrieron una estructura gaseosa monolítica en forma de onda, la más grande vista en la Vía Láctea, compuesta por viveros estelares interconectados.

Nombrada onda Radcliffe en honor a la base de operaciones de la colaboración, el Instituto Radcliffe de Estudios Avanzados, el descubrimiento transforma la visión de 150 años de las guarderías estelares cercanas como un anillo en expansión, a otra que presenta más bien un filamento ondulado, formador de estrellas, que alcanza billones de kilómetros por encima y por debajo del disco galáctico.

El trabajo, publicado en Nature, fue posible gracias a un nuevo análisis de datos de la nave espacial Gaia de la Agencia Espacial Europea (AEE), lanzada en 2013 con la misión de medir de forma precisa la posición, la distancia y el movimiento de las estrellas.

El equipo combinó los datos superprecisos de Gaia con otras mediciones para construir un mapa 3D detallado de materia interestelar en la Vía Láctea, y percibió una pauta inesperada en el brazo espiral más cercano a la Tierra.

Así, los expertos descubrieron una estructura larga y delgada, de alrededor de 9 mil años luz de largo y 400 de ancho, con forma de ola y una cresta de 500 años luz arriba y abajo del plano medio del disco de nuestra galaxia. Esta ola acoge muchas de las guarderías estelares que se pensaba que formaban parte del Cinturón de Gould, una banda de regiones formadoras de estrellas que se cree que están orientadas alrededor del Sol en un anillo.

Ningún astrónomo esperaba que viviéramos junto a una colección gigante de gas en forma de ola, o que formara el brazo local de la Vía Láctea, señaló Alyssa Goodman, profesora de astronomía aplicada de la Universidad Harvard, investigadora asociada en el Instituto Smithsoniano, y codirectora del Programa de Ciencias en el Instituto Radcliffe de Estudios Avanzados.

“Nos sorprendimos por completo cuando nos dimos cuenta de lo larga y recta que es la onda Radcliffe, mirándola desde arriba en 3D, pero lo sinusoidal que es cuando se ve desde la Tierra –admitió–. La existencia misma de esta onda nos obliga a repensar nuestra comprensión de la estructura 3D de la Vía Láctea.

Gould y Herschel observaron estrellas brillantes formándose en un arco proyectado en el cielo, por lo que durante mucho tiempo la gente ha tratado de averiguar si estas nubes moleculares realmente forman un anillo en 3D, recordó João Alves, profesor de astrofísica estelar de la Universidad de Viena.

Mapa 3D

En cambio, lo que hemos observado es la estructura de gas coherente más grande que conocemos en la galaxia, organizada no en un anillo, sino en un filamento masivo y ondulado. El Sol se encuentra a sólo 500 años luz de la onda en su punto más cercano. Ha estado frente a nuestros ojos todo el tiempo, pero no podíamos verlo hasta ahora, explicó.

El nuevo mapa en 3D muestra el vecindario galáctico bajo una nueva luz, brindando a los investigadores una vista revisada de la Vía Láctea y abriendo la puerta a otros descubrimientos importantes.

“No sabemos qué causa esta forma, pero podría ser como una onda en un estanque, como si algo extraordinariamente masivo aterrizara en nuestra galaxia. Lo que sí sabemos es que nuestro Sol interactúa con esta estructura. Pasó junto a un festival de supernovas cuando cruzó Orión hace 13 millones de años, y en otros 13 millones de años volverá a cruzar la estructura, como si estuviéramos surfeando la ola, destacó Alves.

En estudios anteriores, el grupo de investigación de Douglas Finkbeiner, profesor de astronomía y física en Harvard, fue pionero en técnicas estadísticas avanzadas para mapear la distribución 3D del polvo, utilizando grandes análisis de los colores de las estrellas.

Ahora, armados con nuevos datos de Gaia, los estudiantes graduados de Harvard Catherine Zucker y Joshua Speagle aumentaron recientemente estas técnicas, mejorando de forma drástica la capacidad de los astrónomos para medir distancias a las regiones de formación estelar.

Este trabajo, dirigido por Zucker, fue publicado en el Astrophysical Journal.

Imagen del centro galáctico tomada por el telescopio VLT en Atacama (Chile). FRANCISCO NOGUERAS LARA ESO

Hace alrededor de 1.000 millones de años hubo un estallido extremadamente violento de formación de estrellas en el centro de la Vía Láctea. Al contrario de lo que los científicos esperaban hasta ahora, la formación de las estrellas en el centro no ha sido continua a lo largo de la vida de la Vía Láctea, sino más bien abrupta y con grandes pausas. El estallido ocurrió tras miles de millones de años de tranquilidad y originó más de 100.000 supernovas. Estas explosiones corresponden al final de la vida de una estrella muy masiva. Los astrónomos pueden, por lo tanto, concluir que hubo un nacimiento muy abundante de astros de todo tipo, entre ellos muchos de gran masa, que tuvieron una corta existencia y acabaron con este tipo de explosiones.

El proyecto Galacticnucleus, liderado por Rainer Schödel, investigador del Instituto de Astrofísica de Andalucía (IAA) del Consejo Superior de Investigaciones Científicas (CSIC) y segundo autor del estudio que se publica este jueves en Nature Astronomy, es el que ha ofrecido tales conclusiones sobre la historia de nuestra galaxia. “Gracias a nuestro catálogo de estrellas tan detallado y los datos recopilados, podemos entender la propia galaxia que habitamos. Este nuevo hallazgo es uno de los mayores resultados y tan solo una piedra de un mosaico para desvelar la historia del universo”, explica el experto.

Una de las grandes metas de los astrónomos, cuando obtuvieron el catálogo el pasado mes de octubre, era entender la formación de aquellas estrellas y han alcanzado su objetivo. El universo tiene más de 13.000 millones de años. El 80% de las estrellas en el centro de la Vía Láctea se formaron desde aquel pasado remoto, entre el nacimiento del universo y hasta hace 8.000 millones de años. El estudio, cuyo autor principal es Francisco Nogueras Lara, investigador del IAA, revela que este periodo de formación inicial fue seguido por unos 6.000 millones de años de descanso durante el cual apenas nacieron estrellas.

Esta etapa que los científicos llaman “estéril” fue interrumpida por un episodio cuyas condiciones son comparables a las de las galaxias starbust (estallidos de estrellas) que muestran un ritmo de más de cien masas solares por año, muy superior a la tasa actual de la Vía Láctea, que no supera las dos. “Fue uno de los momentos más violentos de la historia de la galaxia. Normalmente, cada 100 años, hay una explosión de una supernova en toda la galaxia. En este caso la misma energía se liberó solo en el núcleo, es decir, en una décima parte”, asevera Schödel. En ese tipo de fenómenos, las estrellas que nacen, con una masa combinada de varias decenas de millones de soles, tienen una vida breve y explotan. Queman su combustible y su hidrógeno nuclear demasiado rápido en comparación con las estrellas más pequeñas. 

Los investigadores han estudiado más de tres millones de estrellas cubriendo un área correspondiente a más de 60.000 años luz cuadrados gracias a la cámara infrarroja del telescopio VLT (Very Large Telescope) en el desierto de Atacama (Chile). Una de las hipótesis que proponen para explicar este acontecimiento, que ocurrió hace relativamente poco en términos astronómicos, es que una galaxia enana se haya cruzado en el plano galáctico y por lo tanto perturbado el sistema. “Pero es difícil saberlo. Por ahora solo podemos hacer especulaciones”, previene el científico. 

David Galadí Enríquez, astrofísico del Observatorio de Calar Alto (Almería) que ya había seguido la evolución del proyecto cuando consiguieron el catálogo, compara la historia de la astronomía con la de la geología. “Lo que demuestra este estudio es que, en los dos casos, es cuestión de combinación entre gradualismo y catastrofismo. La historia se basa en una continuidad [formación de estrellas en el disco galáctico de manera sostenible] perturbada por episodios brutales sorprendentes como este, con picos de actividad impresionantes”, concluye.

 

Por AGATHE CORTES

17 DIC 2019 - 04:13 COT

Página 1 de 6