Después de más de 40 años de viaje y casi 18 mil millones de kilómetros, la nave abandonó la burbuja protectora del Sol para ingresar a la región entre las estrellas, haciendo observaciones valiosas sobre el límite entre estos dos mundos.Foto Afp

Es el segundo aparato humano en hacerlo desde el espacio interestelar

 

Nueva York. La Administración Nacional de la Aeronáutica y del Espacio (NASA, por sus siglas en inglés) recibió el primer mensaje enviado por la sonda Voyager 2 desde el exterior del sistema solar; es el segundo aparato humano que consigue hacerlo desde el espacio interestelar, aunque con datos mucho más detallados que los de su predecesora y nave gemela, la Voyager 1. La señal tardó más de 16 horas en llegar a la Tierra.

"¡Dos señales del espacio interestelar! Un nuevo estudio revela lo que los instrumentos de la nave han hallado tras cruzar la frontera cósmica donde termina el entorno creado por nuestro Sol y comienza el vasto océano del espacio", explicó la NASA a través de su cuenta en Twitter.

Paradas en Urano y Neptuno

La frontera de la heliosfera se encuentra a unos 20 mil millones de kilómetros de la Tierra y el Voyager 2 la alcanzó más de 40 años después de su lanzamiento. La nave partió un mes antes que su gemela, pero salió de la "burbuja solar" seis años después debido a que su ruta tenía paradas en Urano y Neptuno.

"No sabíamos cómo era de grande la burbuja y evidentemente ni si la nave podría sobrevivir lo suficiente para alcanzar la frontera de la burbuja y penetrar en el espacio interestelar", señaló Ed Stone, profesor del Instituto de Tecnología de California (CalTech), quien trabaja en la misión desde antes de su lanzamiento, en 1977.

Tras salir de la heliosfera se dejan atrás las partículas cargadas procedentes del Sol para quedar en un vacío en el que sólo se nota el frío viento interestelar procedente de una supernova que explosionó hace millones de años. Antes se creía que este viento solar se disiparía gradualmente con la distancia, pero la Voyager 1 confirmó que había una frontera definida por una súbita reducción de la temperatura y un incremento de la densidad en las partículas cargadas, el plasma.

La Voyager 2 dará muchos más datos que su gemela, porque un instrumento clave diseñado para indagar las cualidades del plasma que se rompió en 1980 en la sonda pionera. Los resultados se publican en cinco artículos distintos en la revista Nature Astronomy y revelan una frontera de la heliosfera mucho más definida de lo que se pensaba.

Además, apuntan a que "la heliosfera es simétrica, al menos en los dos puntos de cruce de las sondas", según Bill Kurth, coautor de uno de los cinco artículos, lo que alimentaría la hipótesis de una forma esférica frente a los que creen que es más como la estela de un cometa. "Es como observar a un elefante con un microscopio", relató.

El plutonio que alimenta las sondas Voyager se agotará previsiblemente a mediados de la década de 2020, pero seguirán con sus trayectorias. "Las dos naves sobrevivirán a la Tierra. Están en órbita en torno a la galaxia y durarán 5 mil millones de años, o más. La probabilidad de que se estrellen contra algo es prácticamente cero", concluyó Kurth.

La evolución nos dice que es probable que seamos la única vida inteligente del universo

¿Estamos solos en el universo? La pregunta que se plantea es si la inteligencia es un resultado probable de la selección natural o un improbable golpe de suerte. Por definición, los acontecimientos probables se producen con frecuencia, mientras que los sucesos improbables tienen lugar pocas veces o una sola vez. La historia de nuestra evolución muestra que muchas adaptaciones de carácter crucial –no solo la inteligencia, sino también los animales y las células complejas, la fotosíntesis y la propia vida– fueron sucesos únicos y excepcionales y, por tanto, muy improbables. Nuestra evolución tal vez haya sido como ganar la lotería… solo que con una probabilidad mucho menor.

El universo es inmensamente grande. La Vía Láctea tiene más de 100 000 millones de estrellas, y en el universo observable, es decir, en la diminuta fracción de universo que podemos ver, hay más de un billón de galaxias. Aunque los mundos habitables son escasos, el número por sí solo —existen tantos planetas como estrellas, puede que más— invita a pensar que hay mucha vida ahí fuera. Si es así, ¿dónde se ha metido? Esta es la paradoja de Fermi. El universo es inmenso y viejo, y dispone de tiempo y espacio suficiente para que la inteligencia evolucione; sin embargo, no hay pruebas de que tal cosa ocurra.

¿Cabría pensar, sencillamente, que a lo mejor es poco probable que la inteligencia evolucione? Por desgracia, no podemos estudiar la vida extraterrestre para responder a esta pregunta. Pero sí podemos estudiar los casi 4.500 millones de años de historia que tiene la Tierra y observar cuándo se repite –o no– la propia evolución.

A veces la evolución se repite, de tal forma que pueden observarse especies diferentes que evolucionan de manera convergente hacia resultados similares. Si la propia evolución se repite con frecuencia, nuestra evolución podría ser un acontecimiento probable, incluso inevitable.

De hecho, existen ejemplos notables de convergencias evolutivas. El tilacino de Australia, también conocido como lobo marsupial o tigre de Tasmania, hoy extinguido, tenía una bolsa semejante a la de los canguros, pero, por lo demás, parecía un lobo, a pesar de que evolucionó a partir de un linaje de mamíferos diferente. También hay topos marsupiales, marsupiales hormigueros y ardillas planeadoras marsupiales. Es sorprendente comprobar cómo toda la historia evolutiva de Australia, con la diversificación que experimentaron sus mamíferos tras la extinción de los dinosaurios, es paralela a la de otros continentes.

Otros casos llamativos de convergencia son el delfín y el extinto ictiosaurio, que evolucionaron de forma similar para deslizarse por el agua, así como las aves, los murciélagos y los pterosaurios, que evolucionaron de manera convergente para volar.

También se observan convergencias en órganos independientes. Los ojos evolucionaron no solo en los vertebrados, sino también en los artrópodos, los pulpos, los gusanos y las medusas. Los vertebrados, los artrópodos, los pulpos y los gusanos, cada uno por su cuenta, desarrollaron mandíbulas. Por su parte, las patas evolucionaron de forma convergente en los artrópodos, los pulpos y cuatro tipos de peces (tetrápodos, peces sapo, rájidos, peces del fango).

Aquí está la trampa. Toda esta convergencia tuvo lugar dentro de un mismo linaje, los eumetazoos, que son animales complejos dotados de simetría, boca, tubo digestivo, músculos y un sistema nervioso. Hubo eumetazoos diferentes que desarrollaron soluciones similares a problemas similares, pero la compleja estructura corporal que lo hizo posible es única. Los animales complejos evolucionaron una sola vez en la historia de la vida, lo que da a entender que son improbables.

Sorprende constatar que muchos acontecimientos fundamentales de la historia de nuestra evolución son únicos y, seguramente, improbables. Uno es el esqueleto óseo de los vertebrados, que permitió que los animales grandes se desplazaran hacia la tierra. Las complejas células eucariotas de las que están compuestos todos los animales y plantas, y que contienen núcleos y mitocondrias, evolucionaron una sola vez. El sexo evolucionó una única vez. La fotosíntesis, que aumentaba la energía disponible para la vida y producía oxígeno, es un acontecimiento único. A este respecto, también lo es la inteligencia humana. Existen lobos y topos marsupiales, pero no hay humanos marsupiales.

Hay lugares donde la evolución se repite y otros donde no. Si solo nos fijamos en la convergencia, se crea un sesgo de confirmación. La convergencia parece ser la norma y nuestra evolución se presenta como algo probable. Sin embargo, cuando se presta atención a la no convergencia, se observa que está en todas partes, y las adaptaciones decisivas y complejas parecen ser las que menos se repiten, por lo que adquieren carácter improbable.

Además, estos acontecimientos dependían unos de otros. Los seres humanos no pudieron evolucionar hasta que los peces desarrollaron huesos que les permitieron arrastrarse hasta la tierra. Los huesos no pudieron evolucionar hasta que aparecieron los animales complejos. Los animales complejos necesitaban células complejas, y las células complejas necesitaban oxígeno, producido por la fotosíntesis. Nada de esto sucede sin la evolución de la vida, un acontecimiento singular entre acontecimientos singulares. Todos los organismos provienen de un solo antepasado; por lo que sabemos, la vida ocurrió una sola vez.

Es curioso observar que todo este proceso requiere un tiempo sorprendentemente largo. La fotosíntesis evolucionó 1.500 millones de años después de la formación de la Tierra; las células complejas, tras 2.700 millones de años; los animales complejos, al cabo de 4.000 millones de años; y la inteligencia humana, 4.500 millones de años después de que se formara la Tierra. El hecho de que estas innovaciones sean tan útiles pero tardaran tanto en evolucionar implica que son increíblemente improbables.

Una sucesión improbable de acontecimientos

Es posible que estas innovaciones puntuales, casualidades de importancia crucial, crearan una cadena de obstáculos o filtros evolutivos. De ser así, nuestra evolución no fue como ganar la lotería; fue como ganar la lotería una vez y otra y otra y otra. En otros mundos, es posible que estas adaptaciones decisivas hubieran evolucionado demasiado tarde para que la inteligencia apareciera antes de que sus soles se convirtieran en novas, o que no hubieran evolucionado en absoluto.

Supongamos que la inteligencia depende de una cadena de siete innovaciones improbables –el origen de la vida, la fotosíntesis, las células complejas, el sexo, los animales complejos, los esqueletos y la propia inteligencia–, y que cada una tiene un 10% de posibilidades de evolucionar. Las probabilidades de que la inteligencia evolucione pasan a ser 1 entre 10 millones.

Pero las adaptaciones complejas podrían ser incluso menos probables. La fotosíntesis necesitó una serie de adaptaciones en cuanto a proteínas, pigmentos y membranas. Los animales eumetazoos requirieron de múltiples innovaciones anatómicas (nervios, músculos, boca). Por tanto, es posible que cada una de estas siete innovaciones cruciales evolucione solo el 1% de las veces. En tal caso, la inteligencia evolucionará solamente en 1 de cada 100 billones de mundos habitables. Teniendo en cuenta que los mundos habitables son escasos, podríamos ser la única vida inteligente de la galaxia, o incluso del universo observable.

Así y todo, estamos aquí, y este hecho tiene que valer para algo, ¿no? Si la evolución tiene suerte 1 de cada 100 billones de veces, ¿cuáles son las probabilidades de que nos hallemos en un planeta donde la evolución tuvo lugar? En realidad, las probabilidades de estar en ese mundo improbable son del 100%, porque no podríamos tener esta conversación en un mundo donde la fotosíntesis, las células complejas o los animales no evolucionaran. Es el principio antrópico. La historia de la Tierra tiene que haber permitido que la vida inteligente evolucionara, pues, de lo contrario, no estaríamos aquí para plantearnos estas cuestiones.

La inteligencia depende, al parecer, de una cadena de acontecimientos improbables. Pero teniendo en cuenta la enorme cantidad de planetas, e igual que un número infinito de monos que golpean un número infinito de máquinas de escribir para redactar Hamlet, está destinada a evolucionar hacia alguna parte. El resultado improbable fuimos nosotros.

por Nick Longrich

Lector de Paleontología y Biología Evolucionaria en la Universidad de Bath

Algunas de las antenas del complejo ALMA, en los Andes chilenos sobre el fondo de las Nubes de Magallanes. /ESO/C. MALIN

Primeras imágenes del complejo nacimiento de un sistema estelar binario, el más común en el Universo.

Si cada día viéramos dos soles en el cielo en vez de uno estaríamos en uno de los sistemas estelares más comunes del Universo, el de una estrella binaria. Son dos astros ligados gravitacionalmente, que ejecutan una compleja danza guiados por las leyes de la mecánica celeste. Pero cómo llega a formarse este tipo de estructura es algo que nunca se había visto en detalle y por eso las primeras imágenes que se han obtenido de dos estrellas que se están formando en su nube natal suponen una gran noticia.

En las imágenes, filamentos de polvo y gas en forma de espiral salen de un disco de material (disco de acreción) que rodea las dos jóvenes estrellas de masa similar, y que las alimenta a través de una estructura compleja y dinámica que recuerda a los pretzel. El proceso tiene dos etapas. El disco se conecta mediante estos filamentos a otros dos más pequeños que rodean las estrellas nacientes y de los cuales se alimentan. El sistema se va equilibrando de forma que al final las estrellas tienen una masa muy parecida, lo que cumple la teoría sobre la formación de sistemas binarios.

Para obtener las imágenes, un equipo internacional utilizó el observatorio ALMA, que está en Chile, para observar un grupo de jóvenes estrellas en la curiosa nebulosa oscura de la Pipa, a más de 600 años luz de la Tierra. ALMA es un conjunto de 66 radiotelescopios, situado a 5.000 metros de altura, en el que participan el Observatorio Europeo Austral (ESO),que es la gran institución astronómica europea, e instituciones de Chile, Estados Unidos y Japón.

“Vemos dos fuentes compactas, que interpretamos como discos circunestelares alrededor de las dos jóvenes estrellas”, explica Felipe Alves, del Instituto Max Planck de Física Extraterrestre (MPE), que dirigió el estudio. “El tamaño de cada uno de estos discos es similar al del cinturón de asteroides en nuestro Sistema Solar y su separación es de 28 veces la distancia entre el Sol y laTierra”. El disco que rodea las dos protoestrellas tiene una masa total de unas 80 veces la de Júpiter.

“Hemos conseguido por fin observar la compleja estructura de estrellas binarias jóvenes, con los filamentos de alimentación que conectan el disco principal con sus discos”, afirma por su parte Paola Caselli, directora del instituto y coautora del estudio, que se publica en la revista Science y que se ha representado en una animación. En el trabajo ha participado el investigador José Miguel Girart, del Instituto de Ciencias Espaciales (CSIC), quien señala que gracias a la potencia del observatorio ALMA se ha conseguido distinguir mejor el complejo sistema de las jóvenes estrellas binarias y comprender que en ese ambiente sería posible la formación de planetas rocosos como es la Tierra.

Se estima que la velocidad a la que aumenta la masa de los discos circunestelares es de solo una décima parte de la masa de Júpiter por año y esto también está de acuerdo con las predicciones teóricas. Además, el objeto menos masivo de los dos está “engordando” su disco circunestelar más rápidamente que el otro en la observación, aunque los astrónomos reconocen que hacen falta más observaciones similares para apuntalar los modelos.

En el caso de la Tierra, en el Sistema Solar solo hay una estrella y por eso nos parece normal, pero la mitad de las estrellas cercanas al Sol vienen de dos en dos. Su origen parece estar en la fragmentación del disco protoestelar debido a inestabilidades gravitatorias, bastante comunes si nos atenemos a los resultados. En este caso los raros somos nosotros.

15/10/2019 07:38 Actualizado: 15/10/2019 08:00

Premian con el Nobel de Física el aporte de tres científicos a la cosmología

El trabajo de James Peebles reveló que sólo se conoce 5 por ciento del universo // Michel Mayor y Didier Queloz descubrieron en 1995 el primer planeta fuera del sistema solar

 

El canadiense-estadunidense James Peebles y los suizos Michel Mayor y Didier Queloz ganaron este martes el Premio Nobel de Física de la Academia Sueca de Ciencias por sus trabajos en cosmología.

El premio "es mitad para el físico James Peebles por descubrimientos teóricos en cosmología" relativos a los inicios del universo y la otra mitad para el físico y astrónomo Michel Mayor y el astrónomo Didier Queloz por el descubrimiento del primer exoplaneta, anunció Göran Hansson, secretario general de la Academia Real de Ciencias de Suecia.

Los tres investigadores contribuyeron a "una nueva comprensión de la estructura y la historia del universo. Sus trabajos han cambiado para siempre nuestras concepciones", añadió la academia.

Las investigaciones de Peebles, de 84 años y titular de la cátedra Albert Einstein en Princenton, nos remontan "a la infancia del universo" mediante la observación de los primeros rayos luminosos, casi 400 mil años después del Big Bang, ocurrido hace 13 mil 800 millones de años.

"Sus trabajos revelaron un universo en el cual sólo se conoce 5 por ciento de su composición, la materia que forma las estrellas, los planetas, los árboles y nosotros. El resto, o sea 95 por ciento, está constituido de materia y energía oscuras. Es un misterio y un desafío para la física moderna", subrayó la Academia.

Pese a teoría comprobada, siguen los misterios

"Aunque la teoría esté completamente probada, hay que admitir que la materia y la energía oscuras siguen siendo misteriosas", señlaló Peebles en una entrevista poco después del anuncio del galardón.

"Podemos estar seguros de que esta teoría no es la respuesta final", afirmó.

Por su lado, Mayor, de 77 años, profesor honorario del Observatorio de la Universidad de Ginebra, y su doctorante Queloz, de 53, descubrieron en 1995 el primer planeta en órbita alrededor de otra estrella, concretamente de 51 Pegasi B, a 50 años luz de la Tierra.

"No estoy preparado para esto. Esta mañana era un profesor de Cambridge, y de repente mi vida sufrió un vuelco", declaró Queloz a periodistas en Londres, donde estaba para dictar una conferencia.

Bautizado luego como Dimidio, el primer exoplaneta –en la actualidad son más de 3 mil 500– es de un tipo llamado "Júpiter caliente": planeta de gran tamaño, como Júpiter, pero que orbita muy cerca de su estrella.

"Nadie sabía si los exoplanetas existían", recordó Mayor, según un comunicado difundido por la Universidad de Ginebra. “Los astrónomos los buscaban en vano.

“De repente, hemos enriquecido nuestro ‘zoológico’ con otros sistemas planetarios: es como la medicina cuando miramos a otros animales para comprender mejor al ser humano. Fue una revolución”, explicó François Forget, planetólogo del Centro Nacional de Investigación Científica (CNRS) de Francia.

Ese primer exoplaneta conocido "nadie imaginó que podría albergar vida, pero fue el primero de un amplio grupo, del cual algunos están en la zona habitable alrededor de su estrella", señaló Vincent Coude du Foresto, astrónomo del Observatorio de París.

El hallazgo enriqueció el panorama y extendió la búsqueda de vida en el universo.

Antes de 1995, "se habían hallado otros exoplanetas, pero giraban alrededor de púlsares, estrellas muertas", sostuvo Du Foresto.

"Estimamos que en la galaxia hay al menos tantos planetas como estrellas, es decir, alrededor de 100 mil millones", según el astrónomo.

Dimidio es gaseoso e hirviente (alrededor de mil 200 grados Celsius). Orbita alrededor de una estrella de tipo solar.

"Era muy extraño y para nada situado donse habría esperado", recordó el suizo Queloz.

Se halla más cerca de su estrella de lo que lo está Mercurio del Sol y tarda un poco más de cuatro días en dar la vuelta.

"Hasta entonces, creíamos que para que un planeta gigante se creara, tendría que hacer frío y, por tanto, estar lejos de su estrella", explicó François Forget, planetólogo del Centro Nacional de Investigaciones Científicas de Francia.

Es difícil observar un planeta cercano a una estrella debido a su fuerte luminosidad.

Mayor desarrolló una técnica que no permite ver directamente el planeta, pero sí detectar su presencia a través de la perturbación que su gravedad inflige a la estrella.

Este instrumento ultrapreciso, llamado Elodie, detectó el planeta desde el Observatorio de Alta Provenza del CNRS. "Los datos recolectados explicaban la historia que sólo podía ser la de un planeta", señaló Queloz.

El hallazgo fue una sorpresa, porque no pensaban lograrlo tan rápido. El anuncio tuvo lugar el 6 de octubre de 1995 en Florencia.

"El hallazgo cambió la visión que teníamos de nuestro lugar en el universo", según David Clements, del Colegio Imperial de Londres. “Inauguró una nueva era para la cosmología", subrayó Stephen Toope, de la Universidad de Cambridge.

Es, por tanto, "un nuevo paso hacia el aspecto fascinante sobre la detección de pruebas de vida", según Martin Rees, de la Universidad de Cambridge.

Los investigadores recibirán el premio el 10 de diciembre, aniversario de la muerte de Alfred Nobel.

Un inusual exoplaneta gaseoso desafía la teoría sobre la formación planetaria

El descubrimiento por parte del equipo internacional liderado por científicos españoles podría arrojar luz sobre el origen y la evolución del Sistema Solar. 

El descubrimiento de un inusual planeta extrasolar (exoplaneta) gigante que orbita alrededor de una estrella enana ha desafiado el modelo actual y la teoría que explica la formación de la mayoría de los planetas. Podría arrojar luz sobre el origen y la evolución del Sistema Solar.

Un equipo internacional liderado por científicos españoles ha detectado el exoplaneta gigante gracias al instrumento "Cármenes" que opera desde el observatorio astronómico de Calar Alto (Almería), y en la investigación han sido decisivos los datos obtenidos y contrastados también por el Observatorio del Montsec (Lérida), el de Sierra Nevada (Granada) y el de El Teide (Tenerife).

El astrónomo Juan Carlos Morales, del Instituto de Ciencias del Espacio y del Instituto de Ciencias Espaciales de Catalunya, ha subrayado que conocer cómo se forman los planetas es "crucial" para explicar cómo se ha formado el Sistema Solar, cuál ha sido su evolución y qué papel juega cada planeta en ese sistema.

En declaraciones a Efe, Morales ha recordado que hasta hace 20 años "solo conocíamos los planetas del Sistema Solar" y ha precisado que descubrir y estudiar exoplanetas "nos permite desentrañar si la arquitectura de nuestro Sistema Solar es común en el Universo o no". "Yendo un paso más allá, podemos intentar descubrir si el surgimiento de la vida también es común o se tienen que dar unas condiciones muy especiales", ha observado el investigador.

La investigación, cuyos resultados publica este jueves la revista Science, ha involucrado a centros de investigación de todo el mundo, entre ellos el Instituto de Ciencias del Espacio (IEE/CSIC); el Instituto de Ciencias Espaciales de Cataluña (IEEC); el Instituto de Astrofísica de Andalucía (IAA/CSIC); el Centro de Astrobiología (CSIC/INTA); el Observatorio de Lund (Suecia) o el Instituto Max Planck alemán.

Un gigante gaseoso

El exoplaneta detectado por los investigadores es un gigante gaseoso, pero las teorías y los modelos actuales sobre la formación planetaria no contemplaban la presencia de este tipo de planetas orbitando alrededor de estrellas pequeñas, han subrayado el Consejo Superior de Investigaciones Científicas y el Centro de Astrobiología.

Los investigadores han descubierto este anómalo sistema planetario (han confirmado ya la existencia de un planeta, pero podrían ser dos) en torno a la estrella "GJ 3512", una "enana roja" situada a 30 años luz de la Tierra, que llamó la atención de los científicos por su "extraño" comportamiento y porque los datos revelaban la presencia de un "compañero" (el nuevo exoplaneta).

Los datos revelan que la estrella es unas diez veces más pequeña que el Sol y similar a otras ya conocidas que "albergan" planetas de tipo terrestre, pero ninguna de ellas cuenta con planetas gigantes gaseosos como el que acaban de descubrir los científicos.

Algunas estrellas grandes, como el propio Sol, sí tienen planetas gigantes gaseosos, y las estrellas pequeñas (como GJ 3512) suelen tener planetas pequeños como Urano o como la Tierra, ha explicado José Antonio Caballero, investigador del CAB y coautor del estudio. "El planeta gigante de esta estrella ha roto todos los esquemas existentes de formación de planetas y hay que encontrar nuevos modelos que le den una explicación", ha señalado Caballero en una nota de prensa del CAB.

El modelo de acumulación del núcleo

El modelo más aceptado sobre la formación de los planetas es el "modelo de acumulación del núcleo", que se consideraba suficiente para explicar la formación de planetas gaseosos como Júpiter o Saturno en el Sistema Solar, y otros gigantes también gaseosos descubiertos alrededor de otras estrellas, pero nunca tan pequeñas como ésta.

Esa teoría, parte de que los planetas gaseosos se forman a partir de núcleos rocosos que actúan como "semillas" y comienzan a acumular grandes cantidades de gas hasta alcanzar una masa gigante (como la de Júpiter, e incluso mayores), pero este modelo no sirve para explicar el nuevo descubrimiento. "Hemos encontrado lo contrario, un planeta muy grande alrededor de una estrella muy pequeña; esto indica que pueden haber otras vías para formar planetas y apunta que puede haber una población de planetas alrededor de estrellas que hasta ahora no se tenía clara", ha precisado a Efe Morales.

El científico ha detallado que en esta investigación sugieren que el exoplaneta se formó mediante un proceso de "inestabilidad gravitacional". Según han informado el CSIC y el CAB, el nuevo descubrimiento explicaría -a diferencia del "modelo de acumulación del núcleo" que sustentaba hasta ahora la formación de la mayoría de los planetas- que los planetas gigantes gaseosos podrían formarse también directamente a partir de la auto-acumulación de gas y polvo, sin necesidad de un núcleo sólido que actúe como "semilla" de todo el proceso.

26/09/2019 21:57 Actualizado: 26/09/2019 21:57

 Estudiantes siguen en directo el trayecto de la sonda 'Chandrayaan 2' a la Luna, este viernes es un instituto de Bombay (India). Reuters

El módulo 'Vikram' de la misión Chandrayaan 2 se estrelló contra el satélite, igual que le sucedió a la sonda israelí 'Beresheet' cuando este país intentó ser el cuarto en llegar a la Luna

Aunque el podio de la carrera lunar ya está copado, aún se sigue compitiendo por el cuarto puesto. Y 2019 ha sido un año especialmente interesante en esta reactivación de la carrera espacial. En enero de este año, China hizo aterrizar Chang’e4 en la cara oculta de la Luna, convirtiéndose en el primer país del mundo en lograrlo. En abril, Israel, con la sonda Beresheet, la primera misión de este tipo impulsada por inversores privados, intentó convertirse en el cuarto país en aterrizar una máquina sobre el satélite, por detrás de Estados Unidos, Rusia y China, pero un fallo en el motor principal del artefacto hizo que la misión acabase estrellándose. La India, alrededor de las 22.30 de este viernes, hora peninsular española, también fracasó en su intento. El resultado de la misión parecía claro cuando el presidente del país, Narendra Modi, abandonó la sala de control con cara de decepción. Acabó rezando y firmando autógrafos a estudiantes.

Después de superar la fase de frenado y acercamiento al lugar de llegada, el módulo de aterrizaje Vikram tenía que afinar su velocidad para posarse con suavidad sobre la superficie del satélite. A dos kilómetros de altitud, se perdió la comunicación con la sonda. Las hipótesis ahora son muchas, pero deberán pasar horas o días hasta que se pueda realizar una evaluación sobre qué sucedió en esos minutos críticos.

El módulo de alunizaje, bautizado como Vikram en honor al padre del programa espacial indio Vikram Sarabhai, fallecido en 1971, se separó del módulo orbital de la misión Chandrayaan 2 el pasado lunes. El éxito en esa delicada maniobra ya muestra los avances del programa espacial indio, pero el siguiente paso no confirmó la capacidad del país asiático como potencia espacial.

Originalmente, esta misión se planificó de forma conjunta con Rusia, que aportaría su experiencia y su tecnología en varios aspectos clave. Sin embargo, tras el fracaso en 2011 de la misión Phobos-Grunt, que debía explorar el satélite marciano Fobos y acabó atrapado en órbita terrestre a poco más de 300 kilómetros de altitud, los rusos se retiraron del proyecto. El contratiempo supuso un retraso en el calendario inicial, pero la agencia espacial india (ISRO) siguió con su propia tecnología.

La misión Chandrayaan 2 es la continuación de la Chandrayaan 1, que llegó a la órbita lunar en 2008. Aquella sonda recogió imágenes infrarrojas, de rayos X y del espectro visible durante 312 días y realizó un mapa de la topografía lunar y de sus características químicas. En esta ocasión, Vikram debía aterrizar en una llanura cercana al polo sur de la luna, de interés científico, entre otras cosas, porque es probable que allí se pueda encontrar agua en forma de hielo. Para analizar la zona, además del módulo de aterrizaje, la misión contaba con un pequeño rover que habría debido recorrer hasta medio kilómetro por la superficie lunar. El vehículo, destrozado ahora sobre la superficie lunar, se llamaba Pragyan (sabiduría en sánscrito).

Aunque Chandrayaan 2 incorporaba diversos instrumentos científicos para estudiar la Luna, el principal objetivo consistía en probar que la agencia espacial india tenía la capacidad para completar una misión en la que una nave se pose suavemente sobre otro mundo y podía hacer funcionar un rover cargado de instrumentos científicos. Deberán probar de nuevo.

Por Daniel Mediavilla

7 SEP 2019 - 04:43 COT

Ingenieros ponen el telescopio Webb en posición momentos antes del ensamblaje. Foto: NASA.

Ingenieros han ensamblado por primera vez el telescopio espacial más potente hasta ahora construido, lo que podría ser un hito para la ciencia espacial, informa la NASA.

Una vez en el espacio, se espera que el James Webb (JWST por sus siglas en inglés) explore el universo utilizando luz infrarroja. Su objetivo es estudiar desde planetas y lunas que se encuentran en nuestro sistema solar hasta las más antiguas y distantes galaxias.

Para ensamblar las dos mitades del JWST, los ingenieros utilizaron una grúa para posicionar el telescopio sobre una nave espacial que cuenta con un escudo solar, asegurándose de que todos los componentes y puntos de contacto estuvieran perfectamente alineados.

En palabras de Bill Ochs, director del proyecto JWST, el ensamblaje del telescopio y sus instrumentos científicos, el escudo solar y la nave espacial en un solo observatorio, representa un logro increíble para el equipo del Webb y simboliza el esfuerzo de miles de personas dedicadas durante más de 20 años.

Para las siguientes pruebas, los ingenieros desplegarán el intrincado escudo solar de cinco capas, mismo que mantendrá a salvo los espejos y el equipo científico de la radiación infrarroja producida por la Tierra, la Luna y el Sol. El éxito de la misión depende en gran medida de que el escudo se despliegue correctamente.

Los componentes principales del JWST han sido probados individualmente en los posibles escenarios a los cuales se enfrentará durante el viaje en cohete y la misión en órbita a casi 1.610.000 kilómetros de distancia de la Tierra.

El telescopio Webb es producto de un esfuerzo conjunto de la NASA, la ESA (Agencia Espacial Europea) y la Agencia Espacial Canadiense. Se espera que sea el principal observatorio de ciencias espaciales a nivel mundial y ayude a desentrañar las misteriosas estructuras y orígenes de nuestro universo, así como nuestro lugar en él.

29 agosto 2019 

Estudios anteriores de otro sistema estelar, el más cercano a la Tierra a unos 4,2 años luz, demostraron que sus planetas no podrían albergar vida debido a la volatilidad de la estrella. Foto: RT.

Investigadores de diversos países de Europa y uno de Chile han presentado evidencias de la existencia de tres exoplanetas posiblemente habitables. Estos planetas se encuentran orbitando a la estrella GJ1061, que es considerado el vigésimo sistema estelar más próximo a la Tierra, informa el portal Phys.org.

Durante su investigación los científicos estudiaron la estrella GJ1061 para determinar si tiene planetas y si estos podrían albergar vida. Estudios anteriores de otro sistema estelar, el más cercano a la Tierra a unos 4,2 años luz y denominado Próxima Centauri, demostraron que sus planetas no podrían albergar vida debido a la volatilidad de la estrella.

El sistema estelar GJ1061, que se encuentra aproximadamente a unos 17,5 años luz de distancia, es considerado como una estrella pequeña, de menor masa y de baja volatilidad, lo que podría apuntar a la existencia de planetas habitables en su órbita.

Haciendo uso de datos obtenidos por el Observatorio Europeo Austral (ESO) ubicado en Chile, el equipo de científicos halló evidencia de la existencia de tres planetas y posiblemente de un cuarto. Para esto utilizaron el método de velocidad radial, que consiste en observar pequeñas oscilaciones en la órbita de una estrella, lo que significa que la gravedad de un planeta tira de ella.

Los estudios demostraron que los tres planetas son un poco más grandes que la Tierra y que orbitan cerca de su estrella. Los científicos se interesaron especialmente en uno de ellos denominado planeta d, y descubrieron que este tardó tan solo 13 días en completar una vuelta alrededor de su estrella, lo que lo coloca en la zona que podría ser habitable.

Sin embargo, explicaron que desafortunadamente este tipo de estrellas tienden a tener una historia volátil. Eso significaría que el planeta d recibió una gran cantidad de radiación por millones de años y probablemente no albergue vida en este momento.

25 agosto 2019 

(Con información de RT)

 Los tardígrados pueden sobrevivir sin agua, en estado de hibernación, durante una década SHUTTERSTOCK / EPV

El director científico de la misión israelí Beresheet, que se estrelló contra el satélite con animales microscópicos a bordo, no sabía que habían volado en su sonda

Hace una semana, el inversor estadounidense Nova Spivack sorprendió al mundo anunciando en la revista Wired que había enviado animales a la Luna a bordo de la sonda israelí Beresheet. Los viajeros en cuestión son unos seres microscópicos conocidos como osos de agua o tardígrados, capaces de sobrevivir a temperaturas de 200 grados bajo cero o 150 sobre cero, de resucitar después de diez años sin agua o de resistir las condiciones extremas del viaje espacial sin escafandra. El pasado abril, Beresheet aspiraba a convertirse en la primera sonda impulsada por inversores privados en posarse sobre la Luna, pero acabó estrellada. Sobrevivir a ese impacto era improbable, pero si alguien lo podía hacer eran los osos de agua.

Según reconocía Spivack en la entrevista, la idea de lanzar tardígrados con la sonda israelí fue algo que surgió poco antes de enviar hacia Oriente Medio el paquete que su organización, The Arch Mission Foundation, quería colocar en el espacio. En principio, el contenido consistía en una “biblioteca lunar” con 60.000 imágenes de alta resolución de páginas de libros clásicos, la Wikipedia en inglés casi al completo y los secretos de los trucos de magia de David Copperfield.

Esta información es parte del plan de Spivack para difundir conocimiento por todo el sistema solar con el objetivo de que, dentro de miles o incluso millones de años, las ideas o la información necesaria para reconstruir la civilización humana se encuentren en tantos sitios del universo como sea posible. “Cuantas más [bibliotecas] sean enviadas, más probabilidades habrá de que alguna pueda sobrevivir y sea descubierta en un futuro lejano”, explica. The Arch Mission Foundation ya envió la trilogía de novelas Fundación de Isaac Asimov a bordo del Tesla Roadster que Elon Musk puso en 2018 en órbita alrededor del Sol.

El emprendedor estadounidense decidió incluir a última hora muestras del ADN de 24 personas, incluidas las suyas, pegadas a las capas de níquel que conservan las imágenes con la librería que contiene el conocimiento para restaurar la civilización. Además, incluyeron muestras de lugares sagrados del mundo y algunos tardígrados deshidratados. Después, esparcieron unos miles más de estos ositos de agua pegados a la cinta adhesiva que cubrió la biblioteca lunar para protegerla.

Después del choque de Beresheet contra la Luna, es difícil asegurar que los animales microscópicos sobreviviesen —aunque Spivack mantiene la esperanza— y no existe ningún plan para acercarse a recuperarlos y traerlos a la Tierra para rehidratarlos y comprobar si pueden sobrevivir a esta experiencia extrema. El fundador de The Arch Mission Foundation explica a Materia que, además de los tardígrados, enviaron 100 millones de células de diversos organismos incrustados en una resina epoxi con el fin de poner a prueba sus métodos para preservar material biológico en el espacio.

Además de la improvisación en el envío de material biológico a la Luna, el proyecto de Spivack ha tenido otras características poco ortodoxas. Preguntado por este periódico sobre los detalles del envío de tardígrados a la Luna, Oded Aharonson, director científico de la misión, reconoce: “No he tomado parte en esta decisión”. También sugiere que no sabía que se iban a enviar estos animales a bordo de Beresheet y que prefiere "no hablar de este tema”. Spivack, por su parte, asegura que no trataron el envío de material biológico a la Luna con el equipo SpaceIL, la compañía responsable de la misión. “Somos una organización aparte que compró espacio para llevar una carga”, señala. Preguntado por si entre los responsables de la misión alguien conocía con detalle el contenido de esa carga, Spivack se niega a ampliar información. “Eso es todo lo que podemos decir”, afirma.

El miedo a que esos animales superresistentes contaminen la Luna sería infundado. Bernard Foing, científico de la Agencia Espacial Europea (ESA) y director del Grupo Lunar Internacional, considera “probable que estos organismos en la Beresheet no hayan sobrevivido al impacto y la exposición posterior a la radiación ultravioleta”. Foing señala que la propia ESA, que ya ha enviado tardígrados al espacio, ha planeado llevar estos animales a la Luna.

Gerhard Kminek, responsable de protección planetaria de la Agencia Espacial Europea, aclara que, a diferencia de Marte, protegido para no malograr con contaminación terrestre la posibilidad de encontrar indicios de actividad biológica, “no existen requerimientos técnicos de protección planetaria para la Luna y no hay limitaciones desde el punto de vista de la contaminación biológica u orgánica”. La única recomendación del Comité de Investigaciones Espaciales (COSPAR) —el organismo internacional encargado de la protección del espacio exterior— consistiría en informar sobre los elementos orgánicos enviados antes de que pasen seis meses desde el lanzamiento. “El choque de esta misión con material biológico no violó ningún requerimiento técnico de protección planetaria”, aclara Kminek

Por Daniel Mediavilla

14 AGO 2019 - 02:35 COT

La órbita de una estrella alrededor de un agujero negro supermasivo da la razón a Einstein

Un nuevo estudio, en el que ha participado el Instituto de Astrofísica de Andalucía del CSIC, confirma la validez de la teoría de la relatividad, gracias a un estudio durante 26 años que ha calculado con detalle la gravedad en entornos extremos.

 

 

A 26.000 años luz de la Tierra, en las regiones centrales de la Vía Láctea, se halla Sagitario A*, un agujero negro supermasivo con una masa equivalente a unos cuatro millones de soles. Los agujeros negros son objetos tan compactos que ni siquiera la luz puede escapar de su influencia gravitatoria, y fue el estudio detallado de las órbitas de las estrellas cercanas lo que permitió conocer su masa.

Ahora, una de esas estrellas, conocida como S2, ha permitido estudiar en detalle la gravedad en entornos extremos y confirmar la validez de la teoría de la relatividad de Einstein. El trabajo, publicado en la revista Science, ha contado con la participación de investigadores del el Instituto de Astrofísica de Andalucía del CSIC.

Einstein, en su teoría de la relatividad, mostró que el tiempo y el espacio, que siempre se habían considerado entidades diferenciadas, formaban en realidad una entidad única: el espacio-tiempo.

El espacio-tiempo es el escenario en el que se desarrollan todos los eventos físicos del universo, y se trata de un tejido maleable, que se curva en presencia de materia. Esta curvatura es la causante de los efectos gravitatorios que rigen el movimiento de los cuerpos (tanto el de los planetas alrededor del Sol, como el de los cúmulos de galaxias), y los agujeros negros supermasivos constituyen un entorno idóneo para verificar este efecto.

“Nuestras observaciones son consistentes con la teoría de la relatividad –apunta Andrea Ghez, investigadora de la Universidad de California, que encabeza el trabajo-. Sin embargo, la relatividad no puede explicar completamente la gravedad dentro de un agujero negro, y en algún momento tendremos que ir más allá de Einstein, a una teoría de la gravedad más completa que explique estos entornos extremos", subraya.

 

Desplazamiento al rojo gravitatorio

 

Los resultados han sido posibles gracias a la estrella S2, que dibuja una elipse muy pronunciada en torno a Sagitario A* y que, en el punto de máximo acercamiento, se sitúa a tan solo unas tres veces la distancia que existe entre el Sol y Plutón. A esa distancia, y debido a la enorme fuerza de gravedad del agujero negro, la relatividad predice que los fotones (partículas de luz) deberían sufrir una pérdida de energía, lo que se conoce como desplazamiento al rojo gravitatorio.

Eso es, precisamente, lo que ha medido el equipo científico, confirmando un resultado publicado en 2018.

“Este tipo de experimentos está sujeto a un gran número de posibles errores y, desafortunadamente, el equipo que difundió el resultado anterior no publicó todos los datos, algo que debería ser estándar hoy día, señala Rainer Schödel, investigador del Instituto de Astrofísica de Andalucía y uno de los autores del estudio. Con este trabajo, aportamos una comprobación independiente de un experimento extremadamente difícil, muy necesario en este caso, y aportamos todos los datos y los análisis estadísticos”.

Los datos clave en la investigación fueron los tomados con el telescopio Keck (Hawaii) durante los meses del máximo acercamiento entre la estrella y el agujero negro. Estos datos, en cuya obtención participó Eulalia Gallego, investigadora en el mismo instituto, se combinaron con las mediciones realizadas en los últimos 24 años, lo que permitió obtener la órbita completa de la estrella en tres dimensiones y, a su vez, comprobar la validez de la relatividad general.

“Este resultado es un ejemplo claro del enorme potencial de centro galáctico como laboratorio, no solo para estudiar los núcleos galácticos y su papel en la evolución de las galaxias, sino también para resolver cuestiones de física fundamental”, concluye Rainer Schödel, que además es investigador principal del proyecto GALACTICNUCLEUS, que busca resolver cuestiones abiertas incrementando en más de cien veces nuestro conocimiento actual de la población estelar más cercana a Sagitario A*.

MADRID

26/07/2019 10:56 Actualizado: 26/07/2019 11:10

sinc

@agencia_sinc

Página 1 de 11