Ahora sabemos cuántos neutrinos tiene el Sol (y son más de los que se pensaba)

El equipo internacional de científicos del proyecto italiano Borexino ha logrado calcular, por primera vez, el número de distintos tipos de neutrinos que surge de las entrañas del Sol durante las reacciones de fusión que tienen lugar sobre su superficie. Los resultados de esta investigación se han publicado en la revista Nature.


"Los neutrinos que nacen de las diferentes reacciones en el Sol poseen diferentes cargas de energía. Como consecuencia, su estudio (…) nos permite buscar sus efectos más allá del modelo estándar de la física de partículas como, por ejemplo, las interacciones no estándar de neutrinos y de neutrinos estériles", explica Alexandr Chepurnov, docente del Instituto de Investigaciones Científicas de la Universidad Estatal de Moscú.


Los neutrinos son las partículas elementales más pequeñas sobre la superficie solar y se comunican con la materia que los rodea gracias a la gravedad y a las conocidas como 'interacciones débiles', solo presentes entre distancias bastante más pequeñas que el tamaño del núcleo de un átomo.


En 1960, los científicos descubrieron que los neutrinos de un tipo eran capaces de transformarse en otro tipo y que no poseían masa nula, sino una muy pequeña. Desde entonces, la comunidad científica ha observado detenidamente estas pequeñas partículas para tratar de calcular la masa basándose en la facilidad con la que los distintos tipos de neutrinos se convierten en otros tipos.


El proyecto Borexino, que empezó en 2007, pretende desvelar todos estos enigmas.


Como explica Chepurnov, dependiendo del tipo de reacción de fusión que se dé en el subsuelo solar, se genera uno u otro tipo de neutrinos. Si se conoce la proporción y el número de estas partículas, se puede determinar lo que está sucediendo dentro del astro rey y, además, si coincide con lo que ya predicen el modelo estándar y las teorías que intentan explicar cómo se forman las estrellas.


Durante los últimos 10 años, el equipo ha ido elaborando un 'censo' de estas partículas basándose en la cantidad de neutrinos de diferente carga de energía que genera el Sol y que observa el detector Borexino, que contiene 300 toneladas métricas de un fluido que emite destellos de luz en respuesta a los neutrinos.


Cada centímetro cuadrado del Sol produce unos 6.000 millones de estas partículas cada segundo. De la desintegración de berilio se generan otros 5.000 millones. A su vez, el nacimiento de elementos pesados genera unos 800 millones más. Los científicos del proyecto creen que el margen de error puede ser del 10%.


De acuerdo con Chepurnov, las tres cifras, resultados del 'censo', son más precisas que las de las predicciones del modelo estándar de la física de partículas.


Los científicos planean medir en el futuro el número exacto de neutrinos que surgen en la formación de núcleos de carbono, de nitrógeno y de oxígeno. Los resultados serán esenciales para evaluar la cantidad de metales —de elementos más pesados que el hidrógeno y que el helio— que hay bajo la corteza del Sol y para explorar los misterios del ciclo de vida de las estrellas más grandes del universo.

Lanzarán sondas con la misión de develar los misterios de Mercurio

Destino: Mercurio. Un cohete Ariane 5, que se lanzará el sábado desde la Guayana francesa, pondrá en órbita dos sondas espaciales con la misión de tratar de desentrañar el misterio de este "eslabón perdido" entre los planetas rocosos.

Las dos sondas de la misión BepiColombo, que partirán de la base de Kourou a bordo del transbordador europeo, "regresarán como un caballero blanco, con mejores datos y más precisos", aseguró Alain Doressoundiram, astrónomo del Observatorio de París.

Pero antes de alcanzar Mercurio, viajarán durante siete años y recorrerán 9 mil millones de kilómetros.

"Para entender la formación de la Tierra, hay que aclarar primero la de los otros planetas rocosos (Mercurio, Venus y Marte) en su conjunto. Sin embargo, el planeta mas cercano al Sol se desmarca de sus similares sin que sepamos por qué", explicó.

Para escudriñar esos misterios, 16 instrumentos serán transportados entre ambas sondas, una de la Agencia Espacial Europea (ESA) y la otra de la Agencia Japonesa de Exploración Aeroespacial (Jaxa).

Con un diámetro de 4 mil 879 kilómetros (frente a 12 mil 756 para la Tierra), Mercurio es el planeta rocoso más pequeño del sistema solar. Para Pierre Bousquet, de la contribución francesa en BepiColombo, es "extrañamente" pequeño.

Cicatriz de un cataclismo

Esta particularidad sugiere que, en su juventud, Mercurio sufrió el impacto de un gran objeto. "Hay un cráter enorme visible en su superficie que podría ser la cicatriz de ese cataclismo", según este ingeniero. BepiColombo tratará de verificarlo.

Esta hipótesis permitiría explicar igualmente el tamaño inusualmente grande del núcleo de Mercurio (55 por ciento de la masa total del planeta frente a 30 por ciento en el caso de la Tierra).

A excepción de la Tierra, Mercurio es el único planeta telúrico que dispone de un campo magnético, generado por un núcleo líquido. que tendría que haberse enfriado y solidificado, debido al tamaño del planeta, como en el caso de Marte.

Los expertos sopesan varias teorías para entender esta posible anomalía, como la presencia de un elemento en el núcleo que le impediría enfriarse. Estudiando su campo de gravedad, ambas sondas podrán definir la composición y la estructura del planeta.

Quedará por dilucidar por qué el núcleo es diferente al del resto de planetas rocosos, pese a que se formaron prácticamente en el mismo lugar.

En Mercurio, el calor es extremo durante el día (430 grados Celsius) y en la noche hace mucho frío (-180 grados Celsius). Se pasa del día a la noche en el equivalente de tres meses terrestres.

Pero varias misiones anteriores revelaron la presencia de hielo en el fondo de cráteres polares. Los científicos presumen que se habría acumulado a lo largo de bombardeos de cometas y habría escapado a los rayos ultravioletas del Sol.

Japón logra posar dos naves en un asteroide por primera vez

Los artefactos, gemelos, Hayabusa 2 y Minerva 2, no necesitan paracaídas ni sistema de frenado

 

Discretamente, casi de tapadillo, la agencia espacial japonesa (JAXA) acaba de apuntarse otro avance. El pasado fin de semana, su sonda Hayabusa 2 depositó dos pequeños vehículos móviles en la superficie de un asteroide. Es la primera vez que se consigue algo así.


La Hayabusa 2 lleva varios meses aparcada en órbita alrededor de su objetivo, un pedrusco de alrededor de un kilómetro de diámetro llamado Ryugu. Para los japoneses, este nombre tiene resonancias mitológicas: Es el nombre del mítico palacio submarino del dios del mar, cuyas paredes están hechas de coral. Atentos hasta el último detalle, los técnicos han cambiado el color de fondo del escudo de la misión: del azul original al rojo coral.


La sonda orbita a unos 20 kilómetros del asteroide, una distancia perfecta para ofrecer detalladas vistas. El viernes los técnicos le ordenaron descender hasta solo cincuenta metros del suelo, soltar sus dos rovers en caída libre y volver a elevarse.


Ambos artefactos, gemelos, reciben el nombre de Minerva 2. El primero que llevaba ese nombre iba a bordo de la sonda anterior y debía aterrizar en el asteroide Itokawa, hace de eso 13 años. Por desgracia, falló la puntería y el aparatito erró el blanco y se perdió en el espacio.


Las nuevas sondas Minerva tienen el aspecto y tamaño de unas latas de conserva cilíndricas cubiertas de células fotoeléctricas para alimentar a sus equipos (principalmente, cámaras de televisión y medidores de temperatura). No necesitan paracaídas ni sistema de frenado. ¿Para qué? La gravedad de Ryugu es tan débil que les llevó un cuarto de hora recorrer los cincuenta metros. Durante su caída aún tuvieron tiempo de fotografiar la nave nodriza, que remontaba el vuelo. La imagen aparece movida, no por el movimiento del Hayabusa 2, sino porque los rovers iban girando sobre sí mismos.


Al llegar al suelo, ambos artefactos rebotaron y acabaron descansando a pocos metros de distancia uno de otro. No tienen ruedas ni patas, pero pueden desplazarse; por eso se califican de rovers. En su interior llevan un contrapeso accionado por un motor eléctrico. Cuando este gira, se desequilibran y dan una pequeña voltereta. Así, golpe a golpe, pueden ir de un lugar a otro. Eso sí, sin prisa.


La sonda todavía dispone de tres rovers más, de los que se desprenderá en las próximas semanas. El mayor, de construcción alemana, va provisto de equipos que analizan la composición química del suelo.


Para poder acceder a capas más profundas, que jamás han sido alteradas por la radiación solar, el Hayabusa 2 lleva a bordo una bala de cobre de un par de kilos de peso. Llegado el momento, la disparará contra el suelo, donde impactará a más de 2 kilómetros por segundo. El choque deberá poner al descubierto rocas prístinas… y también proyectar al espacio una gran nube de fragmentos. De hecho, se ha programado una maniobra para que la sonda, una vez eyectado el proyectil, busque refugio rápidamente al otro lado del asteroide para evitar el impacto de esa metralla cósmica.


Por último, la sonda descenderá una vez más hasta rozar el suelo con uno de sus sensores. Otro proyectil —esta vez mucho más pequeño— hará saltar esquirlas que serán recogidas por el propio dispositivo e introducidas en una pequeña cápsula. Luego, el Hayabusa 2 emprenderá regreso a la Tierra adonde, si todo va bien, deberá llegar el año 2020. La cápsula caerá con paracaídas en los desiertos de Australia, donde los técnicos japoneses estarán esperando su llegada.
Rafael Clemente es ingeniero industrial y fue el fundador y primer director del Museu de la Ciència de Barcelona (actual CosmoCaixa).

24 SEP 2018 - 18:35 CEST

 

La relatividad también funciona cerca de un agujero negro

26 años de observaciones de una estrella que orbita el centro de la Vía Láctea culminan con la confirmación de la teoría de Einstein en condiciones extremas.

 

En el Universo las distancias son tan grandes y hay tanto que ver y medir que observarlo requiere mucha paciencia, la que han tenido los astrofísicos del Observatorio Europeo Austral (ESO) con su campaña de observación de una estrella durante 26 años. El premio era atractivo, sin embargo, porque se trataba de confirmar que se cumple la teoría de la relatividad general en condiciones extremas, las que imperan en las cercanías de un agujero negro.

Con los telescopios de ESO en Chile el astrónomo alemán Reinhard Genzel y su equipo han seguido el camino de la estrella S2 en su órbita, muy elíptica y con un periodo de 16 años, alrededor del agujero negro supermasivo situado en el centro de la Vía Láctea, que tiene una masa de casi cuatro millones de veces la del Sol. La estrella, como muchas otras, está siendo atraída por el gigantesco sumidero y llega a alcanzar velocidades superiores a los 25 millones de kilómetros por hora, casi un 3% de la velocidad de la luz, y a acercarse a solo cuatro veces la distancia que separa a Neptuno del Sol.

Este año, los astrónomos disponían de un nuevo y avanzado instrumento, llamado Gravity, con el que observaron el pasado mes de mayo la estrella durante su máxima aproximación al agujero negro, atravesando el fortísimo campo gravitatorio que lo rodea. Lo que no habían conseguido hace 16 años lo han conseguido ahora, gracias a la tecnología que combina los cuatro grandes telescopios VLT para hacerlos funcionar como uno solo mucho mayor. Han detectado el efecto relativista que se conoce como corrimiento al rojo gravitatorio en el espectro de la luz de la estrella captada desde la Tierra durante la máxima aproximación y han comprobado que no se adapta al modelo de Newton ni a ningún otro modelo, explica el numeroso equipo científico en los resultados publicados en la revisa Astronomy and Astrophysics. Es la curvatura del espacio-tiempo que predijo Einstein y la primera vez que se confirma la relatividad general en las cercanías de un agujero negro.

“Es la segunda vez que observamos el acercamiento de S2 al agujero negro del centro galáctico”, explica Genzel, “pero esta vez pudimos observarla con mucho más detalle. Nos hemos preparado intensamente durante años para este acontecimiento porque queríamos aprovechar lo más posible esta oportunidad única para observar los efectos relativistas”.

El agujero negro galáctico, el más cercano a nosotros, es ahora un laboratorio para los científicos, que permite probar las ecuaciones de la relatividad general en circunstancias extremas que Einstein probablemente nunca imaginó. “En el Sistema Solar solo podemos probar las leyes de la física ahora y bajo ciertas circunstancias. Es muy importante para la astronomía comprobar que las leyes de la física siguen siendo válidas donde los campos gravitatorios son mucho mayores” dice Françoise Delplancke, directora de ingeniería en ESO.

Por su parte, el astrofísico español Xavier Barcons, director de ESO, recuerda que la organización ha trabajado con Genzel durante más de 25 años y señala que ha representado todo un desafío desarrollar los instrumentos necesarios para tomar estas sutiles medidas e instalarlos en el VLT en Paranal.

La estrella S2 terminará su vida engullida por un agujero negro como otra cuya destrucción ha conseguido captar otro numeroso equipo de astrofísicos, codirigido por el español Miguel Pérez Torres, del Instituto de Astrofísica de Andalucía (IAA).

Un segundo agujero negro supermasivo es el causante de esta destrucción, que dio lugar a un chorro de materia que viajaba a un cuarto de la velocidad de la luz y cuyas emisiones fueron captadas por varios telescopios, algunos en las Islas Canarias. En este caso casi todo (las galaxias y el agujero negro) es más grande y está más lejos que en el anterior trabajo pero también es una primicia. Como dice Pérez Torres, “nunca antes hemos podido observar directamente la formación y evolución de un chorro debido a una muerte estelar de este tipo”, aunque sí se habían detectado unos pocos de estos fenómenos. La detección se publica en la revista Science y es el producto de casi 10 años de observaciones. Lo dicho, hace falta mucha paciencia para conocer el Universo.

MADRID
07/08/2018 08:39 Actualizado: 07/08/2018 08:39
Por MALEN RUIZ DE ELVIRA

Miércoles, 01 Agosto 2018 07:09

Con el Universo en la palma de la mano

Con el Universo en la palma de la mano

Es el físico teórico más citado en el mundo. Recibirá en noviembre la prestigiosa Medalla Lorentz, de los Países Bajos y una escalera hacia el Nobel. Propuso la Conjetura de Maldacena en la que reúne las teorías de la relatividad y de la mecánica cuántica.

En 2018 la “Conjetura de Maldacena” cumplirá 21 años. Esta propuesta tuvo la virtud de buscar explicar los fenómenos del Universo a partir de los aportes de la Teoría de la Relatividad General desarrollada por Albert Einstein –que describe el comportamiento de objetos muy grandes, como estrellas, planetas y galaxias– y la mecánica cuántica del también célebre Max Planck –que explora los fenómenos y laberintos del mundo subatómico–. En la actualidad, Juan Martín Maldacena es el físico teórico más citado en el mundo con más de 15 mil citas y ello no constituye un dato menor; por el contrario, se trata de una excelente muestra de cómo sus trabajos han despertado las curiosidades de cerebros estacionados a lo largo y lo ancho del globo.


Maldacena estudió física en la Universidad de Buenos Aires y en el Instituto Balseiro de la Universidad de Cuyo. Fue el profesor vitalicio más joven de la historia de Harvard y desde 2001 se desempeña como profesor en el Institute for Advanced Study de la Universidad de Princeton, institución donde también realizó su doctorado y en la que trabajó nada menos que el propio Einstein. Recientemente obtuvo la Medalla Lorentz, reconocimiento de prestigio internacional que –cada cuatro años desde 1925– entrega la Real Academia de Artes y Ciencias de Países Bajos. Aunque este científico tiene más pergaminos que años –forma parte de la Academia Nacional de Ciencias y la Academia Mundial de Ciencias (TWAS, por sus siglas en inglés)– el galardón constituye una distinción especial. ¿Por qué? Porque en muchos casos funciona como un paso previo al Nobel: de los 21 premiados, 11 se llevaron el trofeo sueco.


La Medalla será entregada el 19 de noviembre “por sus aportes en el campo de la física teórica, por sus contribuciones en la teoría cuántica de campos y la gravedad cuántica”. A continuación narra de qué se tratan, cómo se relacionan y cuáles son las implicancias de estos conceptos que se escapan de una cabeza argentina y pretenden explicarlo todo, incluso, aquello que no podemos ver.


–¿En qué sentido unificar la teoría de la relatividad y la física cuántica podrían ayudar a comprender los fenómenos del Universo?


–Resulta fundamental para describir el inicio del Big Bang y para entender qué pasa en el interior de los agujeros negros. En ambos casos, el Universo (o parte de él) se hace muy chico y es necesario incorporar la mecánica cuántica a la gravedad de Einstein. Mientras la gravedad es importante para objetos pesados; la mecánica cuántica sirve para explorar objetos pequeños. En este sentido, la mayor parte de los objetos ordinarios, o bien son pesados, o bien son chicos. Como resultado es posible afirmar que en el principio del Big Bang todo el Universo –que es muy “pesado”– también era muy pequeño.


–¿De qué manera su propia “Conjetura” ha contribuido al respecto?


–La conjetura, por ahora, no ha servido para esto; aunque puede funcionar para comprender otras cosas. En principio, nos permite describir agujeros negros si los vemos desde el exterior, incluyendo los efectos cuánticos, como la radiación que Stephen Hawking descubrió. También sirve para traducir problemas cuánticos complicados en problemas gravitatorios simples. Desde 1997, cuando la propuse, se ha entendido mejor y mejor y ello ha permitido reflexionar acerca de nuevas aplicaciones para otras áreas de la física; aunque hoy se sigue estudiando.


–¿Algún ejemplo?


–A partir de estos aportes se torna posible vincular agujeros negros con fluidos compuestos de partículas muy interactuantes, con interacciones complejas. Heráclito afirmó que el tiempo es como un río. En este caso, vemos al espacio-tiempo alrededor de un agujero negro como un fluido.


–¿Y cómo es el Universo desde esta perspectiva?


–Los efectos cuánticos más relevantes para la forma del Universo son los que ocurrieron al principio. Según la cosmología actual, el Universo comienza muy sencillo y casi homogéneo, con pequeñas fluctuaciones en sus geometrías. Se cree que estas fluctuaciones reflejan fluctuaciones cuánticas; que son fundamentales ya que dieron origen, entre otras cosas, a la formación de galaxias y estrellas. Con las teorías actuales se puede ir hacia atrás en el tiempo hasta llegar al momento en que las leyes conocidas dejan de ser válidas. Aún no sabemos si el tiempo se originó allí o si hubo algo antes.


En este punto, ¿cómo se cruzan ciencia y religión? Ambos espacios se preguntan por el origen.


–Sí, pero las preguntas no son las mismas. Quizás en el futuro podamos entender qué ocurrió en el principio del Universo, conforme a nuevas leyes de la física; pero aún quedarían las preguntas del sentido último del todo. Además, la mayor parte de la práctica de la religión pasa por la posición del individuo en el Universo y de las relaciones con los demás. Georges Lemaitre, sacerdote católico que tuvo contribuciones medulares en la teoría del Big Bang, por ejemplo, señalaba que la religión estaba más cerca de la psicología que de la cosmología.


–La física se constituye a partir de aportes teóricos y de comprobaciones experimentales. Ambos espacios se retroalimentan de manera constante y fructífera. ¿Cómo se conjugan en su trabajo?


–La física se basa en experimentos y utilizamos teorías para describir, comprender y reflexionar acerca de sus resultados. Además, esas mismas teorías pueden ser extrapoladas a situaciones en donde todavía no se han hecho los experimentos. Mis trabajos consisten en entender mejor las teorías conocidas y preguntarse cómo tratar de extenderlas al régimen en que los efectos cuánticos son importantes para el comportamiento del espacio-tiempo. Son teorías que, por el momento, no han sido comprobadas experimentalmente.


–Además, podría llevar mucho tiempo. Si tuviera que argumentarlo de manera sintética: ¿por qué es tan importante describir los fenómenos del Universo?


–En muchas ocasiones comprender un fenómeno puede ocasionar el surgimiento de nuevas aplicaciones tecnológicas. No obstante, desde mi perspectiva, la motivación va más allá de la tecnología. Entender cómo funciona el Universo que nos alberga es parte de una aventura cultural de la cual somos parte. De hecho, los que vinieron antes que nosotros hicieron descubrimientos que nos permiten apreciar mejor cómo funciona la naturaleza. ¿Qué son las estrellas? ¿cómo está compuesta la materia? fueron algunos de los interrogantes centrales sin los cuales hoy no podríamos avanzar. En efecto, a nosotros nos toca descubrir algo nuevo para las generaciones siguientes.


–¿Qué es lo que más le gusta y lo que menos le gusta de ser físico?


–Lo que más me gusta es encontrar fenómenos nuevos, descubrir y enterarme de descubrimientos sorprendentes e inesperados que hacen otros investigadores. Entender a un nivel mucho más detallado cómo funciona la naturaleza. Lo que menos me gusta es que, pese a que las investigaciones generan aplicaciones, en muchos casos no son inmediatas.


–Y ello puede despertar algunas críticas. Por otra parte, al principio lo mencionaba: ¿cómo fue trabajar con Stephen Hawking?


–Fue interesante poder observar de primera mano cómo pensaba y se comunicaba. También tuve la oportunidad de trabajar con otros científicos que, aunque no constituyen celebridades mediáticas, son muy brillantes.


–¿El reconocimiento de la Medalla Lorentz es un premio al esfuerzo, al talento, o bien, una combinación de ambos?


–En la ciencia, como en muchas otras ocupaciones, la persistencia, la paciencia y la motivación son más importantes que el talento. Por otra parte, conozco muchos investigadores que están haciendo trabajos muy buenos desde la Argentina.


–Sin embargo, nuestros investigadores no la están pasando nada bien en la actualidad.¿Cómo estimular vocaciones científicas en este marco? ¿Y qué hacer con el magro aporte privado? En EE.UU. es distinto.

–Tiendo a pensar que al mejorar la educación en general y al aumentar el nivel de cultura, las vocaciones se darán naturalmente. En una economía estable y generalmente saludable, las empresas están motivadas a invertir en investigación para no quedarse atrás de la competencia, para desarrollar nuevos productos. En EE.UU., en algunos campos, los privados también financian investigaciones básicas para desarrollar contactos con las universidades y tener oportunidades de aprovechar nuevos descubrimientos.


–Por último, ¿sueña con ganar el Nobel o no le interesa tanto? Ya sabemos lo que ocurrió con buena parte de los que obtuvieron la Medalla Lorentz como antesala.


–Hay muchos otros que se lo deberían ganar antes que yo. Además creo que es más importante tratar de hacer buenos trabajos que enfocarse en premios o reconocimientos, sobre todo, porque constituyen eventos secundarios que pueden depender de otros factores que no dependen necesariamente de mí.


Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.

Descubren un lago de agua líquida bajo el hielo de Marte

El lago subglacial no se encuentra congelado, según los autores del hallazgo, debido a una importante cantidad de sales.


Tras años de debates sobre si hay agua líquida en Marte, un equipo italiano ha comprobado la existencia de un lago subterráneo y salado bajo una capa de hielo, lo que era una de las misiones de la sonda Mars Express de la Agencia Espacial Europea (AEA) enviada al planeta rojo.


La investigación, que publica la revista Science, fue presentada este miércoles en la sede de la Agencia Espacial Italiana (ASI) y fue calificada por su presidente, Roberto Battiston, como "la más importante de los últimos años".

El importante descubrimiento firmado por un equipo de investigadores italianos concluye que en una región llamada Plamun Australe, localizada en la capa de hielo del Polo Sur de Marte, el perfil que dibuja el radar es muy similar al de los grandes lagos de agua líquida encontrados bajo la Antártida y Groenlandia en la Tierra.

El lago se encuentra, según los datos, bajo 1,5 kilómetros de hielo, se extiende unos 20 kilómetros y tendría un espesor de solo un metro, pero además es salado, o no se explicaría que fuese agua líquida visto las temperaturas de entre -20 y -70 grados celsius.


Roberto Orosei, primer autor del estudio y responsable científico del radar italo-estadounidenses MARSIS instalado en la sonda Mars Expres, explicó en una entrevista con Efe los detalles de uno de los descubrimientos más importantes desde que se llegó a Marte y para el que se han necesitados más de cinco años de estudios.


Todo comenzó "observado los datos de los radares que procedían de la base del casquete de hielo del Polo Sur marciano respecto al normal material que teníamos del resto de Marte".


Se trataba de ecos fuertes del radar, que en la Tierra se traducen siempre como agua, ya que "esta tiene la característica de reflejar estos ecos de manera fuerte como hemos descubierto en este tipo de situaciones en lagos subterráneos de Antartida o en Groenlandia".


"Pero tras esta primera pista, que se descubrió en 2007, nos dimos cuenta de que estos fuertes ecos, que se concentraban bajo la parte más blanca del casquete polar de Marte, no era de hielo de agua sino que era anhídrido carbónico", explicó Orosei.


Los investigadores continuaron estudiando y volvieron a notar estos ecos fuertes, pero cambiaban de día en día a pesar de que era la misma zona, hasta que se dieron cuenta de que era un problema del radar "que mandaba una media de los ecos fuertes y débiles encontrados por lo que resultaba imposible calcular bien".


Cambiaron el software del radar y después tardaron más de tres años en observar y recoger los datos de esta zona, y después otros dos años en redactar la investigación y comprobar que estos ecos eran relativos a la presencia del agua ya que tenían la pasada experiencia con el anhídrido carbónico".


"Hemos llegado a la conclusión que cualquier otra explicación que querríamos dar a estos ecos fuertes era mucho menos probable que la de que se tratase de agua", aseguró el científico.

 

Hallan la mitad de la materia ordinaria del universo, tras 12 años de estudios

Hasta ahora había estado perdida; su ubicación era una pregunta abierta para la astronomía. Pero después de 12 años de investigación, un grupo de 21 científicos de seis países encontró entre las galaxias, en forma de filamentos, la mitad de la llamada materia ordinaria del universo con la que está hecho todo lo que vemos, incluidos los seres vivos.

No sabíamos dónde estaba, no se podía haber desintegrado y tendría que estar en algún lado. El estudio fortalece la teoría de la Gran Explosión o Big Bang, que predice cuánta materia ordinaria debió formarse durante el surgimiento del universo, indicó Yair Krongold Herrera, del Instituto de Astronomía (IA) de la Universidad Nacional Autónoma de México (UNAM), quien participó en el hallazgo, publicado recientemente en la revista Nature.


De acuerdo con estimaciones recientes, la materia ordinaria es apenas 4 por ciento de la masa del universo; 23 por ciento está formado por materia oscura y 73 por energía oscura, ambas aún indetectables. Ubicar 50 por ciento de materia ordinaria, hecha de átomos, confirma experimentalmente hipótesis teóricas y ayuda a los astrónomos a tener una pequeña pieza del rompecabezas que describe la estructura cósmica.


Apoyo tecnológico


En su investigación, los astrónomos recurrieron a los telescopios espaciales XMM-Newton, de la Agencia Espacial Europea (ESA), y a Hubble, proyecto conjunto de la estadunidense Nasa y de la primera, así como al terrestre Gran Telescopio Canarias, que opera un consorcio internacional bajo el liderazgo del Instituto de Astrofísica de esa comunidad autónoma española.


Según el experto del IA, hay coincidencia al comparar la cantidad de materia ordinaria predicha por el Big Bang con la información inferida de la luz remanente del universo muy joven (radiación cósmica de fondo); también la hay con la cantidad de materia observada en el universo distante. Pero cuando se trata de distancias más cercanas a nosotros, se pierde paulatinamente evidencia de esta materia.
Además de Yair Krongold, por parte de México participaron Divakara Mayya y Daniel Rosa González, ambos del Instituto Nacional de Astrofísica, Óptica y Electrónica.


La estructura del universo es una telaraña cósmica formada por muchos hilos de gas muy caliente que se entremezclan y a veces se fusionan para crear galaxias. Lo que descubrimos fueron dos filamentos en los que se veía material muy caliente y tenue, explicó.


Se detectaron en rayos X y en ultravioleta. A estas dos miradas desde el espacio, sumaron una tercera desde la Tierra con el Gran Telescopio Canarias.

El radio de la Vía Láctea es del doble de lo que se estimaba

Astrónomos de diferentes países recalculan el tamaño de la Vía Láctea gracias a datos provenientes de un telescopio chino.


Durante décadas, los astrónomos han creído que el radio de la galaxia mide alrededor de 50 mil años luz, y que la distancia del Sol desde su centro sería de unos 25 mil años luz.
Existe un límite bien definido en el borde del disco astral galáctico, y a partir de allí la cantidad de estrellas cae de manera abrupta.Sin embargo, en los años recientes han sido descubiertos astros jóvenes más allá de ahí, lo que indica que el disco astral se extendería más lejos de donde hasta ahora se creía, según datos recopilados por un telescopio ubicado en Xinglong de la provincia china de Hebei.


El Telescopio Espectroscópico Multiobjetivo de Fibra de Gran Área Espacial (LAMOST, siglas en inglés), del Observatorio Astronómico Nacional (OAN) de la Academia de Ciencias de China, puede observar cerca de 4 mil cuerpos celeste a la vez, y ha hecho valiosas contribuciones al estudio de la estructura de la Vía Láctea.


A finales del año pasado, el astrónomo Liu Chao, del OAN, contó las estrellas en el borde de la galaxia utilizando datos del LAMOST y dibujó un muestrario del anillo exterior del plano de la galaxia.
Hay estrellas más allá de lo pensado


Liu Chao descubrió que aunque hay menos estrellas, éstas no desaparecen del todo a 50 mil años luz del centro galáctico, sino que aún se pueden encontrar a 62 mil años luz.


Desde entonces, otros expertos, entre ellos científicos españoles, han participado en la investigación de Liu Chao. Con base en sus descubrimientos, ellos estiman que el radio del disco astral galáctico podría llegar a los 100 mil años luz.


Científicos chinos crearon el banco de datos de espectros estelares más grande del mundo, basándose en observaciones del LAMOST, información que utilizarán para entender mejor la Vía Láctea y estudiar la evolución de galaxias y del universo.

La NASA encuentra moléculas orgánicas de hace 3.000 millones de años en rocas de Marte


El hallazgo del robot explorador Curiosity podría indicar que hubo vida.


La NASA anunció este jueves que su robot explorador Curiosity, una misión que aterrizó en Marte en 2012, ha encontrado moléculas orgánicas formadas hace 3.000 millones de años en rocas del planeta rojo, un hallazgo que podría indicar que hubo vida.


"Este es un descubrimiento muy emocionante, pero no podemos confirmar aún el origen de estas moléculas. Podría ser una prueba de vida anterior, pero también podrían pertenecer a un meteorito u otras fuentes", dijo Paul Mahaffy, director de la división de Exploración del Sistema Solar de la NASA en el canal de la agencia espacial.


A pesar de que aún no está claro el motivo de la creación de estas moléculas, la NASA destacó que este tipo de partículas podría haber sido la fuente de alimento de una hipotética vida microbiana en Marte. "Sabemos que en la Tierra los microorganismos comen todo tipo de productos orgánicos. Es una fuente de alimento valiosa para ellos ", señaló Jennifer Eigenbrode, del Centro Espacial Goddard de la NASA en Maryland (EEUU).


Así, este descubrimiento "no certifica que hubo vida" en ese planeta, según Eigenbrode, pero sí demuestra que los organismos podrían haber sobrevivido gracias a la existencia de esas moléculas. La científica explicó que a pesar de que la superficie de Marte es "inhóspita" hoy en día, los indicios apuntan a que, en el pasado remoto, el clima marciano permitió que el agua líquida, un ingrediente esencial para la vida tal y como la conocemos, se agrupara en la superficie.


De este modo, los datos recopilados por Curiosity revelan que hace miles de millones de años, un lago de agua dentro del cráter Gale contenía todos los ingredientes necesarios para la vida, incluidos los componentes químicos y las fuentes de energía. "Encontrar moléculas orgánicas antiguas en los primeros cinco centímetros de roca que se depositaron cuando Marte pudo haber sido habitable es un buen augurio para que aprendamos la historia de las moléculas orgánicas en Marte con misiones futuras que profundizarán más", añadió Eigenbrode.


La exploración del robot Curiosity, que ya descubrió en 2013 los primeros indicios de agua en el planeta Marte, también determinó que la concentración de metano en la atmósfera de ese planeta cambia con las estaciones. Las mediciones realizadas por Curiosity en el cráter Gale han descubierto que los niveles atmosféricos de metano en el planeta rojo siguen un ciclo estacional y han confirmado que es más alta en torno a los equinoccios (primavera y otoño) y menos en los solsticios.
Aunque el origen del gas sigue siendo desconocido, una de las principales teorías sostiene que procedería de unos reservorios en el subsuelo llamados "clatratos", en los que pudo haber quedado atrapado en el pasado, según investigadores del Centro de Astrobiología (CAB) español, que participaron en el estudio.


 La pregunta sigue abierta


Reuters

Washington.


La detección de Curiosity de compuestos orgánicos en la superficie de Marte y fluctuaciones estacionales de metano atmosférico constituyen algunas de las evidencias más contundentes hasta ahora de que el vecino de la Tierra podría haber albergado vida.


Sin embargo, los científicos de la NASA remarcaron que podría haber explicaciones no biológicas para ambos hallazgos conseguidos por el Curiosity en el cráter Gale, lo que deja el tema de la vida en Marte como pregunta abierta.


Cuando el vehículo cavó cinco centímetros en la roca sedimentaria de 3 mil 500 millones de años en el cráter Gale –aparentemente el sitio de un gran lago cuando el antiguo Marte era más cálido y húmedo– encontró tres tipos diferentes de moléculas orgánicas.


Sobre el metano marciano


Curiosity también midió un ciclo estacional inesperadamente largo en los niveles bajos de metano atmosférico. Alrededor de 95 por ciento del metano en la atmósfera de la Tierra es producido por la actividad biológica, aunque los científicos dijeron que es demasiado pronto para saber si el metano marciano también está vinculado a la vida.


Las moléculas orgánicas son básicas para la vida, aunque también pueden ser producidas por reacciones químicas no vinculadas a la vida. Los científicos dijeron que es demasiado pronto para saber si los compuestos hallados fueron creados o no en procesos biológicos.
La pregunta respecto de si ha habido vida en otro lugar además de la Tierra, quizás incluso en forma de microbios, es una de las preguntas más importantes para la ciencia.


Hay tres posibles fuentes para el material orgánico, comentó la astrobióloga Jennifer Eigenbrode, del Centro de Vuelos Espaciales Goddard de la NASA en Maryland. La primera sería la vida, sobre la que no sabemos. La segunda serían meteoritos. Y la última son procesos geológicos, o sea, los de formación de las rocas, explicó.


Curiosity realizó la primera detección definitiva de moléculas orgánicas en 2014, también en el cráter rocoso Gale, formado a partir de un antiguo sedimento lacustre, pero era un conjunto mucho más limitado de compuestos

 

Tomado del diario La Jornada, México.

 

Miércoles, 30 Mayo 2018 05:36

Detectan seis galaxias sin estrellas

Detectan seis galaxias sin estrellas

Una investigación internacional liderada desde la Escuela Politécnica Federal de Zúrich captó la señal de seis galaxias sin estrellas.


Los astrónomos las conocen como galaxias oscuras y, según varias teorías, son el embrión de todas las galaxias del Universo. Según los modelos, todas ellas empiezan como una acumulación de gas hidrógeno, que se va condensando por la gravedad hasta llegar a un punto crítico en el que los átomos se unen para dar a luz a las estrellas. Sin embargo, la naturaleza de las galaxias oscuras hace que sea difícil confirmar esta teoría: al carecer de astros, no emiten luz en el espectro óptico, por lo que son prácticamente invisibles.


Para sortear este obstáculo, los astrónomos se han aprovechado de unas estructuras llamadas cuásares, agujeros negros supermasivos que habitan el centro de algunas galaxias y que están rodeados de gas. Cuando este se acerca al agujero negro atraído por la gravedad, emite enormes cantidades de radiación electromagnética que recorre grandes distancias. “Hemos utilizado estos cuásares como linternas” para iluminar las galaxias oscuras, explica Raffaella Anna Marino, investigadora de la Escuela Politécnica Federal de Zúrich y primera autora de la investigación, que ha publicado en su último número The Astrophysical Journal.


Cuando la radiación emitida por los cuásares alcanza átomos de hidrógeno, estos se excitan y emiten luz; es el mismo principio por el que funciona la fluorescencia. El equipo liderado por Marino ha escrutado el espacio alrededor de seis cuásares con el instrumento MUSE del Observatorio Europeo Austral (ESO por sus siglas en inglés) y ha detectado seis leves fuentes de luz que, por sus características, “son candidatos muy robustos a ser galaxias oscuras”, declara Marino.


No son las primeras galaxias oscuras que se observan, pero sí están entre los candidatos más robustos, gracias a la cantidad de datos que ha reunido MUSE, afirman los investigadores. Son también las galaxias oscuras más antiguas y lejanas conocidas: emitieron la señal que han captado los astrónomos hace casi 12 mil millones de años, mil 700 millones de años después del big bang. Son como una fotografía al pasado, una época en la que el Universo estaba más agitado que en la actualidad. “Había muchos más fenómenos de fusión”, explica Raffaella Anna Marino.


“Hasta ahora no estaba claro cuál era el escenario de formación de las galaxias, cómo el gas se colapsa y empieza a formar estrellas. Eran todo teorías”, señala Marino. “Ahora tenemos una imagen justo antes de que empiece la formación estelar”. Los investigadores esperan que descubrir nuevas galaxias oscuras les ayude a arrojar luz sobre los misteriosos inicios de las estrellas.