Recreación artística del fenómeno experimentado por esos cuerpos celestes.Foto Igfae

El evento de esos astros, también llamados transparentes, explicaría la mayor colisión masiva de agujeros negros

 

Madrid. Una fusión de estrellas de bosones, conocidas por algunos astrónomos y astrofísicos como estrellas transparentes, podría explicar la colisión de agujeros negros más masiva jamás observada, que produjo la onda gravitacional GW190521, y probar la existencia de la materia oscura.

Es la conclusión del trabajo de un equipo internacional de científicos, liderado por el Instituto Gallego de Física de Altas Energías (Igfae) y la Universidad de Aveiro.

Las ondas gravitacionales son olas en el tejido del espacio-tiempo que viajan a la velocidad de la luz y cuya existencia fue predicha por Albert Einstein en en su teoría general de la relatividad. Estas ondas se originan en los eventos más violentos del universo, llevando consigo la información sobre dicho origen.

Desde 2015, el ser humano puede observar e interpretar ondas gravitacionales gracias a los detectores Advanced LIGO (Livingston y Hanford, Estados Unidos) y al detector Virgo (Cascina, Italia). Hasta ahora, éstos han observado alrededor de 50, originadas durante las fusiones de dos de los entes más misteriosos del universo –agujeros negros y estrellas de neutrones–, que nos han permitido saber más acerca de estos objetos.

Pese a todos los descubrimientos acumulados en sólo seis años, el potencial real de las ondas gravitacionales va mucho más allá. En el futuro, podrían permitirnos observar nuevos tipos de objetos celestes y dar pistas sobre problemas fundamentales de la ciencia como, por ejemplo, la naturaleza de la materia oscura. Esto último, sin embargo, podría haber ocurrido ya.

Onda gravitacional

En septiembre de 2020, las colaboraciones científicas LIGO y Virgo, anunciaron la onda gravitacional GW190521. De acuerdo con el análisis realizado, esta señal era compatible con la fusión de dos agujeros negros de 85 y 66 veces la masa del Sol, lo que dio lugar a uno final de 142 masas solares. Este último es el primero de una nueva familia de agujeros negros: los de masa intermedia. Tal descubrimiento reviste gran importancia, pues dichos agujeros negros eran considerados una especie de eslabón perdido entre dos familias ya conocidas: los de masa estelar que se forman por el colapso de una estrella y los supermasivos que se esconden en los centros de las galaxias, incluyendo nuestra Vía Láctea.

Hoy, parte de los científicos de LIGO y Virgo publican que esa señal no la produjeron dos agujeros negros, sino dos estrellas transparentes hechas de partículas nunca observadas que son billones de veces más ligeras que un electrón. Se llaman bosones ultraligeros y en teoría pueden ser la explicación a uno de los mayores enigmas del universo: ¿qué es la materia oscura?, ese misterioso componente que constituye 27 por ciento del universo mientras la materia conocida compone sólo 5 por ciento?

En el artículo publicado en Physical Review Letters, un equipo de científicos liderado por Juan Calderón Bustillo, en el Igfae, centro mixto de la Universidad de Santiago de Compostela y la Xunta de Galicia, y Nicolás Sanchis-Gual, investigador posdoctoral en la Universidad de Aveiro y en el Instituto Superior Técnico, de la Universidad de Lisboa, propusieron un nuevo origen para la señal GW190521: la fusión de dos objetos exóticos conocidos como estrellas de bosones.

Esos cuerpos son objetos hipotéticos que constituyen uno de los principales candidatos para formar lo que conocemos como materia oscura. Asumiendo ese tipo de colisión, el equipo fue capaz de estimar la masa del constituyente fundamental de esas estrellas, una nueva partícula conocida como bosón ultraligero, billones de veces más ligera que un electrón.

Fueron teorizadas a finales de los años 50 y descritas en mayor detalle en la década posterior. Se trataría de astros hechos de partículas que no emiten luz, pero en lugar de ser un gran punto oscuro en el firmamento serían transparentes a nuestros ojos. Hasta ahora no se ha podido comprobar su existencia debido a que falta la tecnología necesaria y modelos que expliquen bien su comportamiento.

Perseverance inicia su búsqueda de vida microbiana en Marte

Acaban de escuchar una ráfaga de viento en la superficie de Marte, captada por el micrófono y enviada de regreso a la Tierra, expresó este lunes un extasiado Dave Gruel, ingeniero principal del subsistema de cámara y micrófono de la secuencia de entrada, descenso y aterrizaje (EDL, por sus siglas en inglés) de la misión al planeta rojo, en una conferencia de prensa en la sede del Laboratorio de Propulsión a Chorro (JPL, por sus siglas en inglés) de la NASA en California.

El video de unos tres minutos, aunque sin sonido porque el micrófono no funcionó, muestra la parte del descenso en que se abren los paracaídas a fin de reducir la velocidad para posarse sobre una superficie amarronada y rocosa.

El equipo de ingenieros que mostró el video, audios e imágenes del planeta rojo afirmó que todos los sistemas están funcionando para comenzar la misión tras un viaje de siete meses.

El Perseverance, del tamaño de un automóvil Mini Cooper, arribó con éxito el jueves en Marte y apenas posó sus ruedas en la superficie envió dos primeras fotografías del cráter Jezero, de entre unos 3 mil 800 y 3 mil 900 millones de años; se cree que en el pasado era un antiguo lago y delta de un río que se secaron.

El robot buscará señales de antigua vida microbiana analizando el suelo y las rocas del cráter. La mayoría de las cámaras que lleva son a color, pero también se toman imágenes en blanco y negro para aprovechar otros datos, explicó Hallie Gengl, ingeniera del JPL y quien encabeza el equipo de sistemas de datos de los instrumentos.

La nave también posee dispositivos que le permitirán prepararse para la exploración futura del planeta rojo, incluida una máquina del tamaño de una batería de automóvil que intentará producir oxígeno a partir del dióxido de carbono marciano.

También tiene un taladro y otros instrumentos para recolectar muestras de rocas y del suelo marcianos, a fin de almacenarlos en tubos sellados para que los recoja una futura misión, posiblemente con humanos, para transportarlos de regreso a la Tierra.

Adosado al robot, un pequeño helicóptero de 1.8 kilos llamado Ingenuity, con cámaras a color y video, intentará explorar la superficie cercana navegando por la delgada atmósfera del planeta.

Por otra parte, Robert Zubrin, fundador y presidente de la organización Mars Society y autor del libro Alegato a Marte (The Case for Mars, 1996), calificó de ambicioso el plan de Elon Musk de enviar a un millón de colonos al planeta rojo hacia 2050.

Pero sí podemos enviar para esta fecha a un millar de personas a Marte y crearán las capacidades industriales y agrícolas para asegurar la vida de muchas más. Cuanta más gente vaya y nazca allí, más rápido se expandirá nuestra presencia: para 2070 seremos una ciudad que en 2100 tendrá un millón de habitantes o incluso más, vaticinó Zubrin.

A la pregunta de si será posible evitar las víctimas humanas en la colonización de Marte, el científico señaló que siempre hay un riesgo en la exploración, pero las grandes cosas no se logran sin empuje.

Remató con la expresión del primer cosmonauta del planeta, Yuri Gagarin: ¡Vámonos!

El interés hacia la colonización del planeta rojo se reavivó estos días gracias al arribo de Perseverance.

Fotografía cedida este miércoles por la NASA que muestra una simulación del rover Perseverance mientras aterriza de forma segura sobre la superficie de Marte. — NASA / EFE

Perseverance ha tocado la superficie del planeta a las 21.55 horas. Ahora comenzará a buscar signos de vida anterior y a recolectar muestras que serán devueltas a la Tierra en una misión posterior.

 

Siete meses y 470 millones de kilómetros después de partir de Cabo Cañaveral (Estados Unidos), el rover de la NASA Perseverance ha aterrizado a las 21.55  horas de este jueves con éxito en Marte para realizar una misión en la que España y su ciencia jugarán un papel crucial que determinará los futuros viajes tripulados al planeta rojo. 

Lanzado el 30 de julio de 2020, Perseverance tiene tres objetivos: buscar señales de antigua vida, dar soporte a futuras misiones tripuladas, y recoger muestras de roca y sedimentos para enviarlo a la Tierra en 2026 en una misión conjunta con la ESA, la agencia espacial europea. También transporta un experimento tecnológico, el helicóptero Ingenuity, que intentará realizar el primer vuelo controlado y con motor en otro planeta. "Hola, mundo. Primer vistazo a mi hogar", ha afirmado la NASA en un tuit donde se muestra la primea imagen captada del planeta rojo.

El vehículo -de seis ruedas, cerca 3 metros de largo y de 1.025 kilogramos- buscará en Marte señales de vida microbiana pasada y recogerá muestras seleccionadas de rocas y sedimentos para su envío futuro a la Tierra.

El robot científico descendió sobre Marte tras reducir en siete minutos una velocidad de 20.000 kilómetros por hora y con ayuda de una grúa aérea que le permitió bajar suavemente, una operación que los científicos de la NASA habían calificado de peligrosa.

"¡Qué equipo tan increíble para trabajar a través de todas las adversidades y desafíos que conlleva el aterrizaje de un rover en Marte, además de los desafíos de covid!", señaló poco después del amartizaje el administrador interino de la NASA Steve Jurczyk.

Perseverance lleva dos micrófonos, que por primera vez captarán el sonido de Marte, y un helicóptero de cuatro patas y menos de 2 kilos de peso, el Ingenuity Mars, que intentará llevar a cabo el primer vuelo controlado y con motor en otro planeta.

El rover catalogará la geología y el clima de Marte y, para ello, transporta taladros que perforarán las piedras para extraer en unos tubos del tamaño de unos cigarros una treintena de muestras, de las cuales espera poder llevar varias de vuelta a la Tierra. Asimismo, allanará el camino para la futura exploración humana más allá de la Luna.

Equipado con los mejores instrumentos tecnológicos 

Uno de ellos es MEDA (Analizador de la dinámica ambiental de Marte), desarrollado por el Centro de Astrobiología (INTA-CSIC), con participación de Alter Technology, Airbus, Alter Technology, Airbus CRISA, y AVS entre otras empresas, y que está encargado de caracterizar el clima de Marte, algo crucial para las futuras misiones tripuladas. 

De hecho, MEDA es el único instrumento que no pertenece al programa científico de exploración de Marte sino que está vinculado al programa de exploración humana, explica José Antonio Rodríguez Manfredi, investigador principal de MEDA y responsable ante la NASA del instrumento y de los descubrimientos que pueda hacer.

MEDA es la tercera estación medioambiental española operativa en el planeta, junto a TWINS (de la misión InSight de la NASA) y REMS (que opera desde el Curiosity), que también fueron lideradas por el equipo de Rodríguez Manfredi del INTA-CAB.

"Contar con tres estaciones en tres ubicaciones distintas con tecnología afín y controladas por nosotros, es como tener una mini red meteorológica, y eso nos va a proporcionar modelos de predicción meteorológica del planeta, que es algo realmente interesante. Pueden parecer pocas pero es un primer paso" y sitúa a España en "una posición privilegiada" en la exploración marciana, destaca Rodríguez Manfredi.

En comparación con sus predecesoras, MEDA es una estación de última generación, capaz de obtener mejores medidas de la dirección y velocidad del viento, la humedad relativa, la presión atmosférica, la radiación solar ultravioleta, las propiedades del polvo, y la temperatura del suelo y del aire. Además, cuenta con una cámara para tomar imágenes del cielo marciano. 

En el futuro, las misiones serán entre 15 y 20 veces más pesadas que esta y llevarán vidas humanas a bordo, por eso, saber cómo es la atmósfera marciana para que el proceso de entrada de una nave tripulada sea seguro, "es una información clave para cualquier agencia espacial", asegura el científico.

En cuanto al lugar de aterrizaje, la NASA ha escogido al cráter Jezero, de 49 kilómetros y al norte del ecuador marciano, un lugar en el que en algún momento hace entre 3.000 y 4.000 millones de años hubo el delta de un río, lo que le convierte en el lugar idóneo para hallar posibles trazas de vida pasada bien conservadas, explica Rodríguez Manfredi.

Además, al estar cerca del ecuador, las temperaturas son más cómodas, y al ser un cráter, "pensamos que con relativo poco esfuerzo podremos coger unas muestras que hasta la llegada del meteorito estaban en el interior del planeta y tras la explosión salieron despedidas a la superficie, concluye.

Perseverance cuenta con más tecnología española: 'SuperCam', un sistema de calibración diseñado por un consorcio de universidades españolas lideradas por la Universidad de Valladolid, que combina técnicas espectroscópicas y de imagen, situadas en la parte superior del mástil, con las que es posible observar a distancia las rocas y la superficie marcianas y establecer su composición química y mineralógica.

La nave espacial ha tenido que ejecutar de forma perfecta y rápidamente una compleja serie de maniobras autoguiadas para frenar su descenso, evitar los innumerables peligros de la superficie y plantarse suavemente sobre sus seis 


Diez claves sobre el rover Perseverance y otras nuevas misiones a Marte

Tras la llegada de las naves emiratí y china a la órbita de Marte, le toca ahora el turno a la estadounidense, que después de "siete minutos de terror" ha colocado directamente el rover Perseverance en la superficie del planeta rojo para buscar restos de vida. Resolvemos algunas dudas frecuentes sobre esta nueva misión de la NASA.

MADRID

18/02/2021 19:49 Actualizado: 18/02/2021 22:32

Sinc

  1. ¿Por qué están llegando ahora tantas misiones a Marte?

Porque salieron a la vez, aprovechando una "ventana" de lanzamiento que ocurre cada 26 meses en la que la distancia entre la Tierra y Marte es menor. Esto facilita las operaciones, permite ahorrar combustible y, por tanto, costes a la hora de mandar naves al planeta rojo. Esa ventana estuvo abierta a finales de julio de 2020: el 19 despegó la sonda Hope emiratí, el 23 la nave china Tianwen-1 y el 30 el roverPerseverance de la misión Mars 2020 estadounidense.  

Ahora están llegado, respectivamente, el 9, 10 y 18 de febrero. Desgraciadamente el rover de la misión europea y rusa ExoMars, que también estaba previsto que despegara el verano pasado y que llegara ahora, no lo pudo hacer y tendrá que esperar a que se abra la próxima ventana en 2022.  

  1. ¿En qué se diferencian las tres misiones actuales?

La sonda Hope de Emiratos orbitará alrededor de Marte durante un año marciano (dos terrestres) para estudiar su meteorología. La china Tianwen-1 también mantendrá un orbitador, pero además, a partir de mayo dejará caer un "aterrizador" con un rover, que descenderá de esa plataforma para explorar la región de Utopia Planitia, en cuyo subsuelo hay agua helada. Por su parte, la misión estadounidense va a colocar a Perseverance, el vehículo más grande y sofisticado jamás enviado a aterrizar en otro planeta, mediante un método diferente.

  1. ¿Otra vez los "siete minutos de terror" con Perseverance?

Sí, se repite el sistema de aterrizaje utilizado con el rover Curiosity y el módulo Insight porque ha funcionado bien. Los ingenieros de la NASA denominan así a los siete minutos que tarda la nave en desacelerar de forma automática desde los 19.500 km/h a los que entra en la atmósfera de Marte hasta los aproximadamente 3 km/h con los que se posa en su superficie. 

Como las señales de radio tardan unos 11 minutos en llegar a la Tierra (más de lo que dura todo el descenso) no se pueden gestionar los comandos en directo, así que todas las fases están perfectamente programadas y sincronizadas: separación de la etapa de navegación o crucero, entrada en la atmósfera, despliegue de un paracaídas de 21,5 m de diámetro, soltar el escudo térmico, activar la novedosa solución TRN (terrain relative navegation) para sondear el mejor punto de aterrizaje, separación de la carcasa del rover, un sistema de grúas (skycrane) lo descuelga y, finalmente, lo deposita en el suelo, mientras que el skycrane activa sus propulsores para alejarse y estrellarse lejos del Perseverance. 

Cámaras y micrófonos grabaran imágenes y sonidos durante todo el descenso. Si todo va bien, a las 21:55 h (hora peninsular española) del 18 de febrero, el rover estará en el suelo de Marte, pero cualquier mínimo error o evento meteorológico inesperado (una tormenta de arena, por ejemplo) podría alterar los planes: el amartizaje podría ser más violento de lo esperado o en un lugar distinto al previsto. La NASA retransmitirá el acontecimiento en español, además de otros medios e instituciones.  

  1. ¿Dónde aterriza? 

En el cráter Jezero, de unos 50 km de diámetro y situado en la zona ecuatorial de Marte. Los científicos piensan que hace millones de años estaba inundado de agua: era un lago donde desembocaba un río. Este transportaba compuestos arcillosos que tienden a atrapar y preservar la materia orgánica, por lo que el delta es un buen lugar para encontrar restos de vida marciana si es que la hubo.

  1. ¿Cuál es el objetivo de Perseverance?

El principal es buscar evidencias de vida microbiana antigua en Marte, particularmente en rocas conocidas por su capacidad de preservar restos biológicos durante largos periodos de tiempo, pero Perseverance también va a explorar un entorno novedoso y tomar muestras. 

Será la primera misión que recoja y almacene rocas y regolito (pequeños fragmentos, polvo y arena de la capa superficial) del suelo marciano para su posible retorno a la Tierra en futuras misiones. Además, el rover caracterizará la geología, el clima presente y pasado del planeta, sus condiciones de habitabilidad y preparará el camino para las siguientes exploraciones robóticas y humanas. 

  1. ¿Cuántos instrumentos científicos lleva? 

Siete, y en el desarrollo de dos de ellos (MEDA y SuperCam) han participado centros de investigación españoles. En conjunto, servirán para cumplir los objetivos de la misión realizando experimentos sin precedentes y probando nuevas tecnologías. Son estos:

Mastcam-Z: sistema de cámaras para captar imágenes panorámicas, estereoscópicas y hacer zoom (Universidad Estatal de Arizona).

SuperCam: instrumento equipado con una cámara, un láser y espectrómetros para analizar a distancia la composición química y mineralógica de compuestos, incluidos los orgánicos. Podrá, por ejemplo, examinar muestras como la punta de un lápiz a siete metros. Se ha construido en el Laboratorio Nacional de Los Álamos en Nuevo México en colaboración con el instituto IRAP francés y la Universidad de Valladolid, que ha desarrollado su sistema de calibración.

PIXL: un espectrómetro fluorescente de rayos x para analizar con precisión la composición química del material de la superficie marciana (Laboratorio JPL de la NASA).

SHERLOC: espectrómetro Raman con láser ultravioleta para detectar compuestos orgánicos y otras sustancias. Incluye una cámara de alta resolución para tomar imágenes microscópicas a color del suelo de Marte (También del 

MOXIE: experimento para producir oxígeno a partir de CO2 marciano. Si tiene éxito, sería una forma con la que los astronautas podrían generar combustible en Marte para regresar a la Tierra (Instituto de Tecnología de Massachusetts, MIT).

MEDA: estación meteorológica made in Spain con sensores que medirán la temperatura, velocidad y dirección del viento, presión, humedad relativa, radiación solar, así como el tamaño y forma del polvo. El investigador principal es José Antonio Rodríguez-Manfredi del Centro de Astrobiología (CSIC-INTA).

RIMFAX: generador de imágenes de radar de lo que hay bajo la superficie marciana, proporcionando una resolución a escala centimétrica de la estructura geológica del subsuelo (Instituto Noruego de Investigación en Defensa). 

Además de los siete instrumentos, el rover cuenta con un taladro perforador (coring drill), un retroreflector láser de fabricación italiana (parecido a los que dejaron los astronautas en la Luna y que ayudará a posicionar al vehículo desde el espacio en el futuro), un depósito para muestras (coaching system) donde se almacenará y sellará en tubos la arena o rocas recogidas en la superficie marciana para traerlas a la Tierra en una próxima misión de la NASA, así como el pequeño helicóptero Ingenuity

  1. ¿Para qué va a servir el helicóptero?

Es un demostrador tecnológico que viaja en la "panza" del Perseverance. Ingenuity será la primera aeronave que volará de forma controlada en otro planeta. Es una misión independiente, de alto riesgo pero también con posibles recompensas. 

Si la pequeña nave tiene dificultades, la recogida de datos científicos de la misión principal no se verá afectada, pero si vuela tal y como está diseñada, además de proporcionar imágenes en alta resolución del planeta rojo desde ángulos inéditos (como si fuera un dron), puede servir de referencia para futuros proyectos. Las próximas misiones a Marte podrían recurrir a helicópteros de segunda generación para añadir una dimensión aérea a sus exploraciones. 

  1. ¿Cómo es de grande el rover? 

Es del tamaño de un automóvil y pesa 1.025 kilogramos. Mide unos tres metros de largo, 2,7 metros de ancho y 2,2 metros de alto. Su estructura y la de sus equipos asociados (etapa de navegación, etapa de descenso y escudo térmico) se basan en el diseño de su predecesor, el rover Curiosity, que continúa explorando la superficie de Marte. 

  1. ¿Cuánto ha costado la misión?

Según la Planetary Society, una organización internacional dedicada a promover la exploración y divulgación del espacio, el coste de la Mars 2020 Perseverance se estima en unos 2.700 millones de dólares, incluyendo unos 2.200 para desarrollar la nave, 243 para el lanzamiento y 300 para las operaciones científicas que se llevarán a cabo durante los al menos dos años (un año marciano) de operación del rover

  1. ¿Por qué se llama Perseverance?

Este nombre, sugerido por un estudiante de Secundaria con 13 años, Alexander Mather, salió ganador en el concurso escolar "Nombra al rover", organizado por la NASA para bautizar a la misión. Los responsables de la agencia consideraron que "Perseverance" (perseverancia en español) capta muy bien el espíritu de la exploración espacial.

Las redacciones de los estudiantes finalistas en ese concurso, junto a los 10.932.295 nombres y apellidos de personas que participaron en otra campaña, llamada "Envía tu nombre a Marte", se grabaron en tres microchips de silicio que viajarán por el planeta rojo a bordo del Perseverance.

Simulación de un agujero negro en el núcleo de una galaxia.Foto NASA

Un nuevo estudio sugiere la posible existencia de "agujeros negros tremendamente grandes" o SLABs por sus siglas en inglés, incluso más grandes que los agujeros negros supermasivos ya observados en los centros de las galaxias.

La investigación, dirigida por el profesor emérito de la Universidad Queen Mary de Londres, Bernard Carr, de la Escuela de Física y Astronomía, indagó cómo estas podrían formarse y los posibles límites de su tamaño.

Si bien hay evidencia de la existencia de agujeros negros supermasivos (SMBH por sus siglas en inglés) en núcleos galácticos, con masas de un millón a diez mil millones de veces la del Sol, estudios previos han sugerido un límite superior para su tamaño debido a nuestra visión actual sobre cómo se forman y crecen tales agujeros negros.

La existencia de SLABs, incluso más grande que esto, podría proporcionar a los investigadores una poderosa herramienta para pruebas cosmológicas y mejorar nuestra comprensión del Universo temprano.

Se ha pensado ampliamente que los SMBH se forman dentro de una galaxia anfitriona y crecen hasta alcanzar su gran tamaño al tragar estrellas y gas de su entorno o fusionarse con otros agujeros negros. En este caso, hay un límite superior, algo por encima de diez mil millones de masas solares en su masa.

En este estudio, los investigadores proponen otra posibilidad de cómo podrían formarse las SMBH, que podría evadir este límite. Sugieren que tales SLABs podrían ser "primordiales", formándose en el Universo temprano y mucho antes que las galaxias.

Como los agujeros negros ‘primordiales’ no se forman a partir de una estrella que colapsa, podrían tener una amplia gama de masas, incluidas unas muy pequeñas y tremendamente grandes.

El profesor Bernard Carr dijo en un comunicado: "Ya sabemos que los agujeros negros existen en una amplia gama de masas, con un SMBH de cuatro millones de masas solares que residen en el centro de nuestra propia galaxia. Si bien actualmente no hay evidencia de la existencia de SLABs, es concebible que puedan existir y también podrían residir fuera de las galaxias en el espacio intergaláctico, con interesantes consecuencias de observación. Sin embargo, sorprendentemente, la idea de SLABs se ha descuidado en gran medida hasta ahora. Hemos propuesto opciones sobre cómo podrían formarse estos SLABs y esperamos que nuestro trabajo comience a motivar discusiones entre la comunidad".

Se cree que la materia oscura constituye alrededor del 80 por ciento de la masa ordinaria del Universo. Si bien no podemos verlo, los investigadores creen que la materia oscura existe debido a sus efectos gravitacionales sobre la materia visible, como las estrellas y las galaxias. Sin embargo, todavía no sabemos qué es la materia oscura.

Los agujeros negros primordiales son uno de los candidatos potenciales. La idea de su existencia se remonta a la década de 1970 cuando el profesor Carr y el profesor Stephen Hawking sugirieron que en los primeros momentos del Universo las fluctuaciones en su densidad podrían haber dado lugar a que algunas regiones colapsaran en agujeros negros.

"Los SLABs en sí mismos no podrían proporcionar la materia oscura", dijo el profesor Carr, "pero si existen, tendrían implicaciones importantes para el Universo temprano y harían plausible que los agujeros negros primordiales más ligeros pudieran hacerlo".

 Esta imagen, publicada en 2017 por Nature Communication, muestra al planeta a través del tiempo: rojo, muerto y seco a la izquierda, y el mismo paisaje cubierto de agua, al principio de la historia del cuerpo celeste, hace más de 3 mil millones de años.Foto Afp

Electrolizador de salmuera proveerá 25 veces más de ese gas que Moxie, equipo que la NASA tiene programado utilizar

 

La NASA pretende aterrizar astronautas en Marte en la década de 2030, pero ahí el oxígeno es sólo 0.13 por ciento de la atmósfera, en comparación con el 21 de la terrestre y no es viable transportar suficiente oxígeno y combustible en una nave.

La forma en que la NASA planea abordar el problema es mediante Moxie (Mars Oxygen In-Situ Resource Utilization Experiment), un cubo del tamaño de una batería de auto, que pesa alrededor de 17 kilos y su principal objetivo es producir oxígeno a partir de la atmósfera marciana. El sistema está en fase de prueba en el robot Mars Perseverance, lanzado en julio. Convertirá el dióxido de carbono, que constituye 96 por ciento del gas en la atmósfera, en oxígeno.

Sin emargo, esta semana se presentó en Proceedings, de la Academia Nacional de Ciencias de Estados Unidos, un sistema de electrolisis para salmuera que ha demostrado la capacidad de extraer oxígeno e hidrógeno en las condiciones simuladas de la superficie marciana: -36 grados Celsius.

El planeta rojo es muy frío; el agua que no está congelada está casi con certeza llena de sal, lo que reduce su temperatura de congelación y complica la extracción de sus componentes fundamentales para sostener la vida o producir combustible.

Nuestro electrolizador de salmuera marciana cambia radicalmente la estimación logística de las misiones a Marte y más allá, señaló Vijay Ramani, líder del equipo de la Universidad de Washington en Saint Louis, autor del estudio.

Esta tecnología es igualmente útil en la Tierra, donde abre los océanos como una fuente viable de oxígeno y combustible, agregó en un comunicado.

Desde 2008 Mars Express, de la Agencia Espacial Europea, ha descubierto varios estanques subterráneos que permanecen en estado líquido gracias a la presencia de sal (perclorato de magnesio).

El sistema desarrollado en el laboratorio de Ramani puede producir 25 veces más oxígeno que Moxie usando la misma cantidad de energía, al mismo tiempo que hidrógeno, que podría usarse como combustible para el viaje de retorno de los astronautas.

Nuestro electrolizador de salmuera incorpora un ánodo de pirocloro de rutenato de plomo desarrollado por nuestro equipo junto con un cátodo de platino sobre carbono. Estos componentes, cuidadosamente diseñados, junto con el uso óptimo de los principios tradicionales de la ingeniería electroquímica, han producido este alto rendimiento, precisó Ramani.

Representación de la misión ClearSpace-1 de captura de una pieza de basura espacial. — ESA

La ESA toma la iniciativa al contratar a una pequeña empresa tecnológica suiza con la que colaborará la española Deimos.

Un vehículo espacial provisto de una pinza de cuatro dedos intentará atrapar un trozo grande de basura espacial a centenares de kilómetros de altura para quitarlo de en medio y que termine quemándose en la atmósfera. La primera operación de este tipo en el mundo, por ahora, está en marcha tras encargarla la Agencia Europea del Espacio (ESA) mediante un contrato a una pequeña empresa suiza por valor de 86 millones de euros.

"El mayor peligro para las misiones en órbita baja son las grandes piezas, las etapas de cohetes y adaptadores que llevaron a los satélites donde están", explicó Jan Woerner, director general de la ESA, en la presentación de la misión. "El espacio es nuestra infraestructura y la tenemos que mantener limpia, pero además es el mercado del futuro".

La ESA nunca había contratado servicios antes, así que el acuerdo con la empresa Clear Space también es un primer paso hacia un mercado espacial. "Es un nuevo papel para la ESA, la de cliente para servicios especiales. Convencimos a nuestros países socios para hacerlo y Suiza y otros siete países van a poner dinero en el proyecto. No queremos hacer una demostración sino una misión real", detalla Woerner.

Por eso se ha seleccionado un objetivo concreto, el adaptador cónico utilizado para el lanzamiento de dos satélites en 2013 en un cohete Vega y que tiene el tamaño de una lavadora y una masa de poco más de 100 kilogramos. Está ahora en una órbita elíptica de 800 por 660 kilómetros.

Clear Space es una empresa que nace del prestigioso EPFL (Escuela Politécnica Federal de Lausana). Su fundador, Luc Piguet, explica que tras esta primera misión, prevista para 2025, esperan desarrollar nuevas posibilidades, como la de recoger varios trozos de basura espacial de una vez y también dar servicio a satélites en órbita para alargar su vida o repararlos.

La misión es atractiva pero arriesgada, explica Louisa Innocenti, de la oficina Clean Space, creada en ESA para reducir el impacto ambiental de las misiones espaciales: "Podemos detectar el trozo de basura espacial pero no sabemos cómo se mueve, hay que subir y observarlo a distancia. Cogerlo es todavía más difícil. Estamos cooperando con la industria y con universidades y es un sueño para todos nosotros". El plan es lanzar el vehículo ClearSpace-1 con un cohete Vega hasta los 500 kilómetros de altura, desde donde perseguirá al objeto a capturar.

La misión ClearSpace-1 se aprobó el pasado mes de noviembre en la reunión de nivel ministerial de los 22 países miembros de la ESA que se celebró en Sevilla. Al proyecto se han apuntado ya ocho países. España no está entre ellos pero Deimos, una empresa española de ingeniería espacial, estará presente en el consorcio que se está definiendo, a través de sus filiales en varios de los países participantes. El presupuesto total es de 100 millones de euros, de los que 86 millones pagará la ESA y el resto empresas e instituciones.

A pesar de que se trate de un contrato de servicios, la ESA se va a implicar en el proyecto dando soporte, debido a la importancia del tema. En Suiza se considera una oportunidad para desarrollar tecnología para el futuro mercado de limpiar la órbita baja de la Tierra, un mercado todavía por definir pero que nadie duda de que vaya a existir, si se tiene en cuenta la gran cantidad de basura espacial que se ha ido acumulando sin que hasta ahora se hayan establecido normas para evitar su aumento.

La misión ahora contratada es modesta pero indica una tendencia, la de que ya no se puede ignorar el peligro para todas las misiones espaciales de los 34.000 trozos de desechos de hasta varios metros que se estima que existen, a los que se suman más de un millón de diminutos residuos de entre diez y un centímetros y 128 millones todavía más pequeños. Las grandes piezas, incluidos los satélites que ya no funcionan, son consideradas las más peligrosas porque si chocan dos de ellas, como ya ha pasado, dan lugar a numerosísimos fragmentos.

El problema es grave. Se han lanzado a lo largo de la historia espacial (desde 1957) casi 6.000 cohetes, que han situado en el espacio unos 10.500 satélites, de los cuales permanecen en órbita casi 7.000 aunque solo unos 3.300 funcionan.

Además, se están empezando a lanzar enormes grupos de pequeños satélites para dar servicio de Internet, las llamadas megaconstelaciones, que van a suponer un gran dolor de cabeza tanto para las demás misiones espaciales como para los astrónomos. El director general de la ESA afirma que está tratando de convencer a las restantes agencias espaciales de que se obligue a los operadores a que cuenten con una solución para el caso de que falle el satélite: un sistema automático de salida de órbita, un contrato para sacarlo o que tengan que depositar en una de las agencias la cantidad suficiente para que se realice la operación. "Todavía no les he convencido de que es necesaria una regulación internacional pero la situación es insostenible y es necesario que nos pongamos de acuerdo", afirma.

Se espera que la mayor parte de los satélites y etapas de lanzadores futuros dispongan de sistemas automáticos para caer una vez concluida su vida útil o en caso de malfuncionamiento, pero la basura espacial ya existente sigue siendo un gran problema. Los expertos están especialmente preocupados por el satélite Envisat que precisamente lanzó la ESA y que no funciona desde 2012. Pesa ocho toneladas, es tan grande como un autobús y está en una zona densamente poblada de la órbita terrestre baja (a partir de los 600 kilómetros de altura) sin que se pueda manejar en absoluto.

Mucho más arriba, en la órbita geoestacionaria donde se encuentran los grandes satélites de telecomunicaciones, la situación no es mucho mejor, pero la densidad es mucho menor y los satélites son de mayor tamaño y se intentan trasladar a una órbita de aparcamiento cuando terminan su vida útil, lo que permite un mejor control.

madrid

08/12/2020 22:39

Por MALEN RUIZ DE ELVIRA

Aterriza una cápsula espacial con pistas sobre el origen del Sistema Solar. — EFE/EPA

 

La sonda Hayabusa2 fue lanzada al espacio en 2014 con el objetivo de alcanzar un asteroide de más de 4.600 millones de años. Éste tiene unas características muy ventajosas para poder conocer más detalles sobre la formación de nuestro planeta.

 

Tras recorrer unos 5.200 millones de kilómetros, la sonda nipona Hayabusa2 trajo este domingo a la Tierra una cantidad minúscula de muestras de un remoto asteroide que puede guardar muchos secretos del Sistema Solar, en una operación en la que, según dijeron sus responsables, "todo fue perfecto".

Hayabusa2 fue lanzada al espacio el 3 de diciembre de 2014 con un primer objetivo: alcanzar el asteroide Ryugu, que se formó hace unos 4.600 millones de años y que tiene unas características ventajosas para conocer la formación de nuestro Planeta.

Ryugu –nombre de un palacio mágico submarino del folclore nipón– tiene unos 900 metros de diámetro y una forma ligeramente cúbica y, como otros planetas menores, está considerado entre los cuerpos más antiguos del Sistema Solar.

Con un peso de unos 600 kilos y un tamaño de 1,6 metros en su lado mayor, Hayabusa2, al acercarse a la Tierra, se desprendió el sábado de una cápsula con muestras tomadas en Ryugu, y el aparato aterrizó este domingo en una zona desértica del sur de Australia.

"En el espacio todo fue perfecto. Y con el trabajo del equipo que recogió la cápsula todo fue perfecto", afirmó en una rueda de prensa catorce horas después del aterrizaje de la cápsula el director del proyecto Hayabusa2 de la Agencia de Exploración Aeroespacial de Japón (JAXA), Yuichi Tsuda.

Hayabusa2 se ha pasado seis años navegando alrededor del Sol y su primer momento clave fue el 22 de febrero de 2019, cuando aterrizó por primera vez en Ryugu para tomar las primeras muestras de la superficie del asteroide.

Volvió a hacerlo el 11 de julio de 2019, después de que desde su órbita lanzara un proyectil para abrir un pequeño cráter en la superficie de Ryugu y, gracias a ello, poder tomar muestras subterráneas.

Aunque el peso total de las muestras no llega a un gramo, el hecho de que sean restos de la superficie y subterráneos puede permitir a los científicos tener mejores pistas sobre su composición, al no haber estado expuestas a los elementos las pruebas subterráneas.

De acuerdo con los científicos, en la formación de la Tierra el planeta estuvo demasiado próximo al Sol para que el agua pudiera condensarse, pero una vez se enfrió tanto agua como materiales orgánicos llegaron a la Tierra procedentes de asteroides como Ryugu.

El tercer paso clave de la misión se completó en las últimas horas al aterrizar en el sur de Australia la cápsula de la que se desprendió Hayabusa2 el sábado, y que entró a la atmósfera este domingo por la madrugada resistiendo temperaturas próximas a los 3.000 grados centígrados.

Gracias a una radiobaliza que portaba, la cápsula generó señales para su localización al aterrizar cayendo asistida por un paracaídas, y, al amanecer, un helicóptero la encontró al lado de un arbusto, esperando a ser recogida.

El aparato, de unos 30 centímetros de distancia, fue trasladado a instalaciones de la localidad australiana de Woomera, antes de que emprenda el viaje de regreso a Japón para que las muestras de Ryugu sean investigadas minuciosamente.

Tsuda dijo que durante la misión estaba confiado de su éxito, aunque no con exceso de confianza, revisando "cuidadosamente cada paso".

No contaban los responsables de la misión con la lluvia y los vientos fuertes que había en la zona del aterrizaje el sábado, un día antes de que llegara la cápsula, pero el tiempo mejoró y pudo completarse la misión con éxito.

En la misión han cooperado distintas instituciones internacionales, entre ellas la Agencia Espacial de Australia, cuya directora, Megan Clark, en declaraciones a los periodistas desde Woomera expresó su esperanza de que las muestras que llegaron del espacio permitan saber "cómo llegó el agua a nuestra Tierra".

Hayabusa2 llegó a acercarse a la Tierra hasta unos 7.000 kilómetros de distancia, pero después de desprenderse de la cápsula siguió con otra misión y un nuevo rumbo, esta vez hacia otro asteroide, este con el nombre de 1998KY26

Por Agustín de Gracia (EFE)

Trazan en Australia atlas del universo en sólo 300 horas

El Pathfinder, radiotelescopio de matriz de kilómetros cuadrados (Askap) de la Organización de Investigación Científica e Industrial del Commonwealth (Csiro), de Australia, trazó un atlas del universo con 3 millones de galaxias en sólo 300 horas.

Es como un mapa de Google del universo en el que la mayoría de los millones de puntos con forma de estrella son galaxias distantes; nunca habíamos visto alrededor de un millón.

Larry Marshall, director ejecutivo de Csiro, explicó en un comunicado que Pathfinder reunió una infraestructura de clase mundial con experiencia científica y de ingeniería para descubrir los secretos más profundos del universo.

"Aplica lo más reciente en ciencia y tecnología a antiguas preguntas sobre los misterios del universo y equipa a los astrónomos con nuevos avances para resolver sus desafíos", destacó.

“Todo está habilitado por receptores innovadores desarrollados por Csiro que cuentan con tecnología de alimentación de matriz en fase, que permite que el radiotelescopio genere más datos sin procesar a un ritmo más rápido que todo el tráfico de Internet de Australia.

"En un momento en el que tenemos acceso a más datos que nunca, el radiotelescopio y las supercomputadoras que lo respaldan brindan conocimientos incomparables y manejan las herramientas que apoyarán nuestro futuro impulsado por los datos para mejorar la vida de todos."

La característica clave del telescopio es su amplio campo de visión, generado por los nuevos receptores diseñados por Csiro, que le permiten tomar fotografías panorámicas del cielo con un detalle asombroso.

El resultado de la investigación abre nuevas oportunidades de descubrimiento.

Fuentes: El viejo topo

Entrevista a Álvaro de Rújula sobre Disfruta de tu universo, no tienes otra opción (I)

 

Álvaro de Rújula nació en Madrid, donde estudió Física y obtuvo su doctorado. Ha trabajo en Italia (Centro Internacional de Física Teórica, Trieste), Francia (Instituto de Estudios Científicos Avanzados), Estados Unidos (Universidades de Harvard y de Boston, MIT) y en la Organización Europea para la Investigación nuclear, el CERN (desde estudiante de verano hasta director de la División de Teoría). Actualmente también forma parte del Instituto de Física Teórica de la Universidad Autónoma de Madrid (IFT/UAM/CSIC).

En los años setenta del pasado siglo, el profesor de Rújula contribuyó a la consolidación del modelo estándar de la física de partículas, principalmente la cromodinámica cuántica y sus quarks encantados. También ha realizado trabajos sobre neutrinos (las mediciones de la masa y la tomografía de la Tierra), la ausencia de antimateria en el universo, cómo encontrar el bosón de Higgs, etc.

En Los Libros de la Catarata (junto con la Fundación Areces y la Real Sociedad Española de Física) ha publicado recientemente Disfruta de tu universo, no tienes otras opción.

Disfruta de tu universo, no tienes otra opción, es el hermoso y epicúreo título de tu último libro. ¿Es imprescindible saber ciencia para disfrutar de nuestro universo y de tu libro?

Para disfrutar de nuestro universo ciertamente no es imprescindible. Espero que no lo sea para disfrutar de mi libro. Es una de las razones por las que lo escribí.

¿Pero cuánta ciencia habría que saber?

Para disfrutar de mi libro espero que muy muy poca. Para disfrutar del universo, cuanta más, mejor.

El “tu” del título: ¿hace referencia a un universo personal o el universo es igual para todos?

Quizás todos tengamos un universo personal. Pero, si así fuese, yo sólo he estado en el mío. El Universo con mayúscula es igual o muy parecido para todos los científicos… serios.

¿Y qué condiciones debe tener un científico para ser serio? ¿Hay científicos o científicas que no lo son?

Debería de haber dicho bueno, íntegro u honesto. Evidentemente en todas las profesiones los hay que no lo son. En la ciencia el sistema para detectarlos, esencialmente el “arbitraje por los pares”, funciona relativamente bien, pero está lejos de ser perfecto. Hay feudos inexpugnables, intereses económicos espurios, etc. Como en todas partes, pero mucho menos.

Intereses económicos espurios, feudos inexpugnables… ¿Nos puedes dar algún ejemplo?

Las investigaciones en farmacia y ocasionalmente en biología tienen subvenciones directas, o indirectas, de compañías farmacéuticas. Eso tiene sus peligros evidentes. Algunas revistas científicas de prestigio tienen también sus peculiaridades. Un ejemplo: Nature, en donde he publicado algunos artículos de investigación o de comentario (con tendencia a que me cambiaran el título sin mi permiso). Si quieres publicar en Nature un artículo criticando otro que hayan ya publicado y proponiendo una alternativa, la revista exige que tu artículo sea primero aceptado por los autores del artículo criticado. Muy honestos tienen realmente que ser dichos autores para no disfrutar de su inviolabilidad automática. Los hay que no lo son.

Como en todas partes, dices, pero mucho menos. ¿Por qué mucho menos? ¿Ser científico exige un grado de honradez inexistente en las otras profesiones o trabajos? ¿No estás mirando tu profesión con ojos  demasiado generosos?

Para no meterme en camisas de once varas, quizás debería de haber dicho “rigor”, en lugar de honradez. El juez definitivo e infalible en la ciencia es lo observable en la naturaleza. El arbitraje de los pares puede no ser riguroso, pero a la larga la verdad científica (en su acuerdo con lo repetida y precisamente observado) prevalece. Pero no siempre los datos se manejan con rigor o se atribuyen las ideas a su primer autor o autores. De ahí que dijera mucho menos y no muchísimo menos.

¿Qué es la ciencia para un científico investigador como tú?

En sentido estricto las ciencias como la química o la biología —y sobre todo la física— son aquellas en las que quienes las practican pueden llegar a un acuerdo basado en realidades comprobables observacionalmente. Las matemáticas también son una ciencia, pero sus criterios de veracidad son lógicos, no experimentales. La economía emplea hoy en día métodos científicos pero no es una ciencia. Razón: trata con demasiadas variables no medibles. Prueba: los economistas jamás se ponen de acuerdo, por mucho que manejen los mismos datos.

Para mí la ciencia es un apasionante hobby que de paso me da de comer. Y de cuando en cuando, satisfacción. Por ejemplo cuando creo saber —o mis colaboradores y yo creemos saber— algo que en este planeta nadie más sabe. Y resulta ser cierto.

Lo que apuntas de la economía, ¿se puede decir también del resto de disciplinas que forman parte de las ciencias sociales?

Temo que sí.

¿Será porque en estas disciplinas la ideología de los científicos está más presente?

En la diana.

¿Nos puedes dar algún ejemplo de alguna cosa que tus colaboradores y tú hayáis creído saber y que nadie más sabía, y que además era cierta?

Un ejemplo fácil de entender: el universo visible no está hecho de grandes “continentes”, unos con estrellas y planetas de materia “ordinaria” y otros de antimateria. Demostrado con mis colegas Andy Cohen y Shelly Glashow.

Más difícil de explicar brevemente: las interacciones entre quarks están caracterizadas por una escala de energía o, equivalentemente, de distancias. Dicha escala cromodinámica podía deducirse a mediados de los 70 del siglo pasado empleando datos ya existentes. Yo fui el primero en hacerlo y conocer su valor; ningún otro físico teórico ha sido el primero en determinar una constante “fundamental” de la naturaleza.

Y un ejemplo que no entenderás: es posible acotar la masa de los neutrinos empleando procesos de captura “débil” de electrones; trabajos en parte en colaboración con mi colega Maurizio Lusignoli.

Paro aquí, me he pasado ya varios pueblos dándome autobombo. Te atribuyo a ti toda la culpa.

Haces bien, asumo toda la culpa y acepto también mi dificultad para entender el último ejemplo que has dado. Estudio, me documento.

¿Qué relación hay, desde tu punto de vista, entre ciencia y verdad?

La ciencia no busca la “Verdad” con mayúscula. Pero sí descubre aproximaciones cada vez más precisas a la verdad (científica, claro).

¿Quiénes buscarían entonces la Verdad con mayúscula?

Soy físico, no tertuliano. No tengo respuestas ex-cátedra a todas las preguntas. ¿Y a quién podría interesarle mi opinión sobre una pregunta de la que todo el mundo sabe la respuesta?

A mí por ejemplo y no sé si todo el mundo sabe la respuesta.

Menosprecias a tus lectores. Malo, malo.

Intento no hacerlo. ¿Qué caracteriza a la verdad científica, la que escribes con minúscula?

Lo he dicho: es una aproximación, pero es verificable. Las hay que no parecen aproximaciones, por ejemplo que el espacio tiene tres dimensiones. Pero hasta esto es, en cierto sentido, una aproximación, ya que existe la posibilidad —no excluida— de que cada cosa que nosotros consideramos un punto sea como una bolita con sus propias dimensiones “internas”. Pues bien, habitantes de civilizaciones distintas que nunca hayan tenido un contacto anterior llegarán a la misma conclusión: es verdad que hay tres dimensiones espaciales “grandes”: esas que van de adelante a atrás; del lado del corazón al otro; y de arriba a abajo.

Sobre lo que es Verdad con mayúscula, raro sería que dos civilizaciones distintas se pusieran de acuerdo por medios no violentos.

¿La ciencia es el único conocimiento sólido o hay otros tipos de conocimientos, no estrictamente científicos, que no merecen ni deben ser menospreciados?

Por supuesto que, en mi opinión, los hay. Por ejemplo todas las artes. Aunque conocimiento “sólido” no sea la mejor manera de calificarlas. A pesar de que Michelangelo ya supiera de antemano qué estatua, bien sólida, le aguardaba dentro de una enorme losa de mármol de Carrara.

Escribes en el prefacio de tu libro: “Pocos no científicos se adhieren con entusiasmo a la opinión de que entender el universo en el que estamos, o sencillamente intentarlo, también es muy divertido. “No entiendo nada” es una reacción frecuente a cualquier texto científico. En mi opinión, la razón fundamental no es que la ciencia sea aburrida o indescifrable, sino que, en la mayoría de los casos, no se enseña adecuadamente.” ¿Quiénes no la enseñan adecuadamente?

Muchos —aunque no todos— los maestros o profesores, desde el jardín de infancia hasta la universidad.

¿Por desconocimiento, por falta de habilidad pedagógica, por la compleja matemática que rodea a algunos resultados científicos, por excesivo teoricismo…?

Supongamos que un profesor de tenis no haya jugado nunca al tenis. Olvidemos la compleja matemática, que en el tenis lo es mucho. Este profe tendría también las otras carencias que citas. De modo análogo, para enseñar bien ciencia es casi imprescindible haber hecho un poco de investigación o, como mínimo, haber presenciado como la hacen quienes la hacen. Un ejemplo: grupos de profesores de primaria y secundaria de muchos países visitan con regularidad el CERN. Lo más útil de esas visitas son las sesiones en las que participan con investigadores en, por ejemplo, un análisis de datos. Es como si el profe de tenis se decidiera finalmente un buen día a jugar un poco. Aunque más le hubiera valido empezar ya de pequeñito.

¿No es casi socialmente imposible, una especie de utopía pedagógica, que todo el profesorado que enseña ciencia deba haber hecho un poco de investigación o presenciado como la hacen quienes las hacen? ¿No exigiría lo que señalas y defiendes una verdadera revolución (la palabra no está de más) en la formación de nuestros maestros y profesores de ciencias?

En mi opinión los maestros son los pilares de la sociedad. Y la revolución a la que te refieres se puede costear. Por ejemplo, profesores universitarios de reconocida calidad investigadora y docente podrían pasar una fracción de su tiempo enseñando a maestros o haciendo de maestros. Pagándoles bien por ello, claro. Muchos laboratorios y universidades podrían hacer cosas como las que el CERN y otros laboratorios como Fermilab (cerca de Chicago) ya hacen. Hay que poner las “manos en la masa”, algo que escribo con mayúsculas porque es una manera, que explico en el libro, de enseñar a niños como actuar y colaborar como científicos.

Por último, bueno sería que la de maestro fuese una profesión extremadamente competitiva, socialmente respetadísima y muy bien pagada. Nada de esto me parece utópico.

Déjame dar una referencia, que tomo de tu libro, de ese programa de enseñanza al que aludes (“Hands on): “Looking Back: Innovative Programs of the Fermilab Education Office”https://ed.fnal.gov/office/marge/retro.html. Tomemos un descanso si te parece.

De acuerdo.

Por Salvador López Arnal | 10/11/2020

Fuente: El Viejo Topo, octubre de 2020

La Estación Espacial Internacional vista desde el Atlantis el 23 de mayo de 2010.Foto Ap

 Del tamaño de una cancha de futbol y de 453 toneladas, la central da vueltas a la Tierra 16 veces al día a 28 mil km/h

 

Ayer se cumplieron 20 años de presencia humana ininterrumpida en la Estación Espacial Internacional (EEI), con la llegada en 2000 de la Expedición 1, primera de larga duración en el complejo.

La EEI es la nave espacial más grande que ha construido la humanidad: mide unos 109 metros de largo (casi como una cancha de futbol) y pesa alrededor de 453 toneladas. Da vueltas a la Tierra 16 veces al día, a unos 28 mil kilómetros por hora y va tomándole fotos desde una perspectiva única. A la vez, es el laboratorio a más altura creado por el hombre, ya que orbita el planeta a cerca de 400 kilómetros.

Las primeras piezas para la construcción salieron al espacio en 1998 y este 2 de noviembre la EEI suma un hito más a su existencia: se cumplen 20 años de que recibió a sus primeros huéspedes y de que empezó a estar habitada de manera continua.

Desde que el estadunidense Bill Shepherd y los rusos Yuri Guidzenko y Serguéi Krikaliov se hospedaron ahí, siempre ha estado ocupada por 241 personas (en total, en distintos momentos) de 19 países.

La construcción de la EEI requirió la colaboración de 15 naciones y ahora las principales agencias a cargo son la estadunidense NASA, la Espacial Europea, la rusa Roscosmos, la japonesa Jaxa y la Espacial Canadiense.

Además, 108 países han realizado más de 2 mil 700 investigaciones en la central, de acuerdo con la NASA.

La tripulación de la primera expedición estaba formada por un comandante estadunidense: Shepherd, quien había estado en el espacio tres veces antes en misiones de transbordadores de una semana de duración como máximo, y los rusos Guidzenko y Krikaliov tenían experiencia en vuelos espaciales de larga duración en la estación Mir; el segundo estuvo cerca de un año completo en el espacio.

La Expedición 1 empezó cuando la tripulación se acopló a la estación a bordo de la nave rusa Soyuz TM-31, que había partido dos días antes. Durante los 136 días de la misión, la tripulación activó varios sistemas en el complejo, desempacó equipos que se habían enviado y alojó a tres tripulaciones de transbordadores STS y dos vehículos rusos Progress de reabastecimiento no tripulados.

Los tres transbordadores llevaron equipos, suministros y componentes clave a la estación espacial. El primero, STS-97, se acopló a principios de diciembre de 2000 y llevó el primer par de grandes paneles fotovoltaicos hechos en Estados Unidos, lo que incrementó cinco veces la capacidad de potencia de las células.

Los estudios en los astronautas a bordo de la EEI han ayudado a entender la pérdida ósea y muscular, pero no sólo a causa de la microgravedad del espacio, sino también en la Tierra, por razones como la edad, estilo de vida y algunas enfermedades, señaló la NASA.

Los científicos han estudiado las medidas para contrarrestar estas pérdidas por medio de ejercicios, alimentación e incluso de fármacos, tanto en el espacio como en la Tierra.

Las condiciones de microgravedad también han permitido estudiar males como el Alzheimer, el Parkinson, el asma, el cáncer y hasta problemas cardiacos en los laboratorios de la estación espacial, detalla la NASA.

En la EEI no se desperdicia prácticamente nada. La tecnología de reciclaje de agua se ha afinado. El sudor, la orina misma se reciclan y se convierten en agua potable.

El Sistema de Recuperación de Agua de la central permite reusar 93 por ciento del líquido de la nave, según la agencia estadunidense.

Esta tecnología será mucho más útil cuando los astronautas puedan emprender misiones más lejanas y más largas, como a la Luna o a Marte.

Página 1 de 15